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Note on Intersection of rational curves

Barry  H Dayton    

(https  : // barryhdayton.space)

One  application  of implicitization  not  mentioned  in Section  3.1  of my  Space  Curve  Book  or  Degree  vs 

Dimension Mathematical  Journal  article  is the  intersection  of rational  curves.  Overall  there  seems  to be 

a lack  of material  on  this  topic  in the  literature.   This  note  corrects  that,  however  it will  not  be incorpo -

rated  into  the  Space  Curve  Book  because  I am  viewing  this  not  in the  context  of affine  real  curves  but  as 

complex  projective  curves  and  applications  lie  elsewhere.  I am  still  working  numerically  of course.

For  a simple  example  let  

In[  ]:= L1 = 
2 t

1 + t2
,
1 - t2

1 + t2
;

L2 = {2 + t, 2 t};

Then  these  curves  meet  at points

p1 = {1.5999999999999996` + 0.6633249580710802` ⅈ,
-0.8000000000000002` + 1.3266499161421594` ⅈ};

p2 = {1.5999999999999999` - 0.66332495807108` ⅈ,
-0.8000000000000002` - 1.32664991614216` ⅈ};

Let  

In[  ]:= α1 = -0.4000000000000001` + 0.66332495807108` ⅈ;
α2 = -0.4000000000000001` - 0.66332495807108` ⅈ;
β1 = 0.6666666666666669` - 1.1055415967851334` ⅈ;
β2 = 0.6666666666666669` + 1.1055415967851334` ⅈ;

In[  ]:= L1 /. {t → β1}
L2 /. {t → α1}

Out[  ]= {1.6 + 0.663325 ⅈ, -0.8 + 1.32665 ⅈ}
Out[  ]= {1.6 + 0.663325 ⅈ, -0.8 + 1.32665 ⅈ}

In[  ]:= L1 /. {t → β2}
L2 /. {t → α2}

Out[  ]= {1.6 - 0.663325 ⅈ, -0.8 - 1.32665 ⅈ}
Out[  ]= {1.6 - 0.663325 ⅈ, -0.8 - 1.32665 ⅈ}

Notice  that  the  parameter  values  for  the  two  curves  differ  at the  intersection  points.   By  intersection  we  

mean  point  wise,  that  is the  two  parametric  curves  have  a common  point  in their  range  not  that  the  

parameterized  curves  have  the  same  value  for  a given  t.



The  fact  that  these  curves  above,  normally  considered  real   curves,  have  a common  point  is partly  a 

consequence  of Bézout’s  theorem.   It is well  known  that  parameterized  curves  are  algebraic,  that  is 

satisfy  an implicit  equation,  we  will  show  this  explicitly  later  (this  is also  in my  space  curve  book  and  

Mathematica  Journal  paper).   In the  example  above  one  is a circle  and  the  other  is a line,  both  plane  

algebraic  curves  one  of degree  1 and  one  of degree  2.  So  Bézout’s  theorem  requires  these  implicit  

curves  to have  two  complex  projective  points  in common.   A caveat  is that  the  range  of a parameterized  

curve  need  not  be  the  complete  implicit  curve.   In the  case  above  both   parameterized  curves  are  

missing  a point  in their  implicitizations,  sometimes  more  is missing.   In this  example  the  intersection  

points  are  not  among  the  missing.   Unlike  the  plane,  in 3-space  and  higher  it is not  expected  that  two  

curves,  parameterized  or not,   will  have  a common  point.

The  purpose  of this  note  is to explore  several  methods  for  deciding  if there  is a common  complex  

projective  point  of the  parameterizations  and,  if so,  find  the  point  and  the  parameter  values.   We  will  

see  later  that  Bézout’s  theorem,  albeit  the  one  in my  Space  Curve  Book,  will  still  have  something  to say  

about  it in higher  dimensions.

The  motivation  for  studying  this  material  comes   from  the  more  general  problem  of finding  rational  

curves  in surfaces.   Unlike  the  plane,  rational  curves  in a two  dimensional  surface  are  not  guaranteed  to 

intersect  but  o�en  do  in predicable  configurations.   Efficient  calculation  of these  intersections  o�en  

helps  in finding  additional  curves  suggested  by the  configuration.  A number  of the   examples  here  

come  from  my  investigations  of this  phenomena.   The  topics  are

1.  Brute  force  method

2. Affine  linear  case

3. Implicitization

4. Hybrid  method

5. Projection  and  li�ing

6. Multiplicity  of Intersections

1. Brute force method.

The  simplest  way  to find  the  common  point  above  is to write  the  two  plane  curves  with  separate  

named  parameters  and  then  solve  for  a common  point  with,  say,  NSolve.  It helps  that  we  have  the  

same  number  of coordinates  as variables.

In[  ]:= L1t = 
2 t

1 + t2
,
1 - t2

1 + t2
;

L2s = {2 + s, 2 s};
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In[  ]:= sol = NSolve [L1t - L2s]

Out[  ]= {{s → -0.4 + 0.663325 ⅈ, t → 0.666667 - 1.10554 ⅈ},
{s → -0.4 - 0.663325 ⅈ, t → 0.666667 + 1.10554 ⅈ}}

In[  ]:= L1t /. sol〚1〛
L2s /. sol〚1〛

Out[  ]= {1.6 + 0.663325 ⅈ, -0.8 + 1.32665 ⅈ}
Out[  ]= {1.6 + 0.663325 ⅈ, -0.8 + 1.32665 ⅈ}

shows  the  common  value.   

Actually  note  the  built  in Mathematica  function  FindInstance  works  directly  in this  exact  situation  

giving  an exact  answer

In[  ]:= FindInstance [L1t ⩵ L2s, {t, s}, 2]

Out[  ]= t →
1

3
× 2 - ⅈ 11 , s →

1

5
ⅈ 2 ⅈ + 11 , t →

1

3
× 2 + ⅈ 11 , s → -

1

5
ⅈ -2 ⅈ + 11 

This  may  not  work  so well  for  space  curves  or numerical  curves.   Consider  the  following

In[  ]:= f1t = {4.4577934452533` + 1.2005375928194961` t,

-5.1000087955131415` - 1.4720419842010817` t,

3.0076111620619237` + 1.2715043913815856` t}

f2s = {-0.25754825919834656` - 1.4720419842150836` s, 0.5084795140223721` +

1.2005375928244255` s, -1.1751566551004844` + 1.271504391390658` s}

Out[  ]= {4.45779 + 1.20054 t, -5.10001 - 1.47204 t, 3.00761 + 1.2715 t}

Out[  ]= {-0.257548 - 1.47204 s, 0.50848 + 1.20054 s, -1.17516 + 1.2715 s}

In[  ]:= NSolve [f1t - f2s]

Out[  ]= {}

FindInstance  is no  better

In[  ]:= FindInstance [f1t ⩵ f2s, {t, s}]

RowReduce : Result for RowReduce of badly conditioned matrix

{{1.47204 , 1.20054 , 4.71534 }, {-1.20054 , -1.47204 , -5.60849 }, {-1.2715 , 1.2715 , 4.18277 }} may contain

significant numerical errors .

Out[  ]= {}

There  is no  solution  but  in fact,  numerically,  there  is an intersection  point.   The  main  problem  here  is 

that  there  is a small  numerical  error  that  makes  NSolve think  these  systems  are  inconsistent.   The  

brute  force  procedure  here  is to look  at the  consistent  projection  to the  first  two  coordinates  and  then  

test  the  solutions  on  the  third  component.

In[  ]:= sol2 = NSolve [Take [f1t - f2s, 2]]

Out[  ]= {{s → -0.286625 , t → -3.57625 }}
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In[  ]:= p1 = f1t /. sol2〚1〛
p2 = f2s /. sol2〚1〛

Out[  ]= {0.164376 , 0.164376 , -1.5396 }

Out[  ]= {0.164376 , 0.164376 , -1.5396 }

So it appears  that  these  are  the  same  point.   To  check  further

In[  ]:= p1 - p2

Out[  ]= -4.44089 × 10
-16

, -2.77556 × 10
-16

, -9.25575 × 10
-11 

So the  third  coordinates  are  close  but  not  close  enough  for  NSolve.  We  can  refine  this  using  a few  steps  

of Gauss-Newton

In[  ]:= ts0 = {t, s} /. sol2〚1〛;
ts1 = gaussNewtonMD [f1t - f2s, ts0, {t, s}, 3]

» Z {- 3.57625 , - 0.286625 }

» {Change , SVL , Residue }= 5.03258 × 10
-11

, {2.67258 , 1.81856 }, 1.38179 × 10
-11

» Z {- 3.57625 , - 0.286625 }

» {Change , SVL , Residue }= 2.83103 × 10
-16

, {2.67258 , 1.81856 }, 1.38179 × 10
-11

» Z {- 3.57625 , - 0.286625 }

» {Change , SVL , Residue }= 2.83103 × 10
-16

, {2.67258 , 1.81856 }, 1.38183 × 10
-11

Out[  ]= {-3.57625, -0.286625 }

Now

In[  ]:= p1g = f1t /. {t → ts1〚1〛}
p2g = f2s /. {s → ts1〚2〛}

Out[  ]= {0.164376 , 0.164376 , -1.5396 }

Out[  ]= {0.164376 , 0.164376 , -1.5396 }

In[  ]:= p1g - p2g

Out[  ]= -9.66099 × 10
-12

, -9.6621 × 10
-12

, -2.06279 × 10
-12 

so the  first  two  coordinates  are  give  larger  residues  but  the  last  coordinate  gives  an equivalently   accu -

rate  value.   This  is the  best  we  can  do  using  machine  numbers.

When  one  or both  of the  parameterized  curves  is not  polynomial  then,  as in my  book  and  paper,  I will  

assume  there  is a common  denominator  for  each  curve,  they  do  not  need  to be the  same.   Then  we  can  

look  at the  curves  as projective  polynomial  curves  by adding  a last  coordinate  which  gives  the  denomi -

nators.   For  my  opening  example  I would  have

f3t  = {2 t, 1 - t^2,  1 + t^2}

f4s  = {2 + s, 2 s, 1}

However  as f3t  is projective  any  constant  multiple  will  be  the  same  curve  so I need  a homogenizing  
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variable,  say  κ, to make  it homogenous.   In the  second  case  that  variable  can  just  be   1 because  1m = 1.  

So I get

In[  ]:= f3tκ = {2 t κ, κ ^2 - t^2, κ ^2 + t^2}

f4s = {2 + s, 2 s, 1}

Out[  ]= 2 t κ, -t
2
+ κ2, t

2
+ κ2

Out[  ]= {2 + s, 2 s, 1}

I now  have  3 variables  to play  with  so I can  go brute  force.

In[  ]:= sol3 = NSolve [f3tκ - f4s]

Out[  ]= {{s → -0.4 - 0.663325 ⅈ, t → -1.0045 - 0.330177 ⅈ, κ → -0.620814 + 0.534238 ⅈ},
{s → -0.4 + 0.663325 ⅈ, t → -1.0045 + 0.330177 ⅈ, κ → -0.620814 - 0.534238 ⅈ},
{s → -0.4 + 0.663325 ⅈ, t → 1.0045 - 0.330177 ⅈ, κ → 0.620814 + 0.534238 ⅈ},
{s → -0.4 - 0.663325 ⅈ, t → 1.0045 + 0.330177 ⅈ, κ → 0.620814 - 0.534238 ⅈ}}

There  are  4 solutions  but  notice  both  are  multiple  so there  are  only  2 distinct  solutions

In[  ]:= f3tκ /. sol3〚1〛
f4s /. sol3〚1〛

Out[  ]= 1.6 - 0.663325 ⅈ, -0.8 - 1.32665 ⅈ, 1. + 1.11022 × 10
-16 ⅈ

Out[  ]= {1.6 - 0.663325 ⅈ, -0.8 - 1.32665 ⅈ, 1}

and

In[  ]:= f3tκ /. sol3〚2〛
f4s /. sol3〚2〛

Out[  ]= 1.6 + 0.663325 ⅈ, -0.8 + 1.32665 ⅈ, 1. - 1.11022 × 10
-16 ⅈ

Out[  ]= {1.6 + 0.663325 ⅈ, -0.8 + 1.32665 ⅈ, 1}

Since  the  last  coordinates  of all  of  these  are  1 the  affine  specializations  are  jus the  truncations,  eg,

In[  ]:= Take [{1.5999999999999996` - 0.6633249580710795` ⅈ,
-0.8000000000000005` - 1.326649916142159` ⅈ, 1}, 2]

Take [{1.5999999999999996` + 0.6633249580710795` ⅈ,
-0.8000000000000005` + 1.326649916142159` ⅈ, 1}, 2]

Out[  ]= {1.6 - 0.663325 ⅈ, -0.8 - 1.32665 ⅈ}
Out[  ]= {1.6 + 0.663325 ⅈ, -0.8 + 1.32665 ⅈ}

This  is,  of  course,   the  same  as we  got  above.

We  now  consider  the  case  of infinite  points.   Since  a rational  curve  will  have  a small  number  of infinite  

points  it is easiest  to calculate  the  infinite  points  of each  curve  separately  and  then  compare  to see  if 

any  are  the  same.

Polynomial  curves  have  a unique  infinite  point  where  t goes  to  ±∞.  Since  for  large  t each  component  is 

dominated  by the  highest  degree  we  need  use  only  the  term  with  highest  degree.   But  the  value  of 
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points  will  be  dominated  by the  largest  component.   So  we  actually  need  only  terms  of the  highest  

degree  of the  polynomial  parameterization.   So  for  example  the  curve

{2t^3-t^2+t-3,-t^2+t+3,-4t^3+t^2-3t+2}

has  infinite  points

{2, 0, -4, 0} and {-2, 0, 4, 0}.

Using  Mathematica  we  have  a nice  trick  for  finding  infinite  points  of a rational  curve  with  common  

denominator.   We  first  put  it in projective  form,  that  is the  first  coordinates  are  the  numerators  and  the  

last  coordinate  is the  denominator.   We  solve  the  denominator  for  zeros.   Not  every  solution  will  give  an 

infinite  point,  but  could  give  an affine  point  that  should  be tested  with  the  other  rational  equations.  We

find  the  limits  with

In[202]:= projectiveLimitMD [F_, rule_ ] := Module {a},
a = Limit [Normalize [F], rule ];

IfAbs[a〚-1〛] < .00001, Chop [a], Drop a  a〚-1〛, -1

This  returns  affine  points  as affine  points  and  infinite  points  projectively  with  last  component  0.

Consider  the  curve  h

In[209]:= h = 27.349820832030318` - 15.065272401948405` t -

2.919331106172443` t2 + 1.8785254541795746` t3  -12.921034234062224` +

9.695810119167971` t - 1.0483465206221556` t2 - 0.30525274788036194` t3,
51.58819766037419` - 44.72286427685518` t + 8.307314538164498` t2 +

0.5821828764832482` t3  -12.921034234062224` + 9.695810119167971` t -

1.0483465206221556` t2 - 0.30525274788036194` t3,
-6.181890838829132` + 14.69473451665689` t - 9.955842979730761` t2 +

2.0273012322133344` t3  -12.921034234062224` + 9.695810119167971` t -

1.0483465206221556` t2 - 0.30525274788036194` t3

Out[209]= 
27.3498 - 15.0653 t - 2.91933 t2 + 1.87853 t3

-12.921 + 9.69581 t - 1.04835 t2 - 0.305253 t3
,

51.5882 - 44.7229 t + 8.30731 t2 + 0.582183 t3

-12.921 + 9.69581 t - 1.04835 t2 - 0.305253 t3
,

-6.18189 + 14.6947 t - 9.95584 t2 + 2.0273 t3

-12.921 + 9.69581 t - 1.04835 t2 - 0.305253 t3


We  have  a utility  function  :

In[203]:= rncGetProjectiveForm [f_] :=

With [{n = Length [f]}, Append [Table [Numerator [f〚i〛], {i, n}], Denominator [f〚1〛]]]

Write  this  as 
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In[210]:= H = rncGetProjectiveForm [h]

Out[210]= 27.3498 - 15.0653 t - 2.91933 t
2
+ 1.87853 t

3
, 51.5882 - 44.7229 t + 8.30731 t

2
+ 0.582183 t

3
,

-6.18189 + 14.6947 t - 9.95584 t
2
+ 2.0273 t

3
, -12.921 + 9.69581 t - 1.04835 t

2
- 0.305253 t

3

In[211]:= solH = t /. NSolve [H〚4〛]
Out[211]= {-8.0399, 2.10812, 2.49742 }

In[  ]:= tabH = Table [projectiveLimitMD [H, t → solH〚i〛], {i, 3}]

Out[  ]= {{-0.465533 , 0.295661 , -0.834185 , 0},

{0.361907 , -0.535191 , -0.763279 , 0}, {0.707107 , 0.707107 , 0, 0}}

We  can  also  try

In[212]:= Hinf = projectiveLimitMD [H, t → ∞]

Out[212]= {-6.154, -1.90722, -6.64139 }

which  gives  an affine  point  .  We  plot,  considering  the  infinite  points  as affine  directions.  For  conve -

nience  we  give  this  infinite  points  names

In[  ]:= a = Drop [tabH〚1〛, -1]

b = Drop [tabH〚2〛, -1]

c = Drop [tabH〚3〛, -1]

Out[  ]= {-0.465533 , 0.295661 , -0.834185 }

Out[  ]= {0.361907 , -0.535191 , -0.763279 }

Out[  ]= {0.707107 , 0.707107 , 0}

In[  ]:= Show [ParametricPlot3D [h, {t, -20, 20}, PlotRange → 25],

Graphics3D [{{Black, PointSize [Large ], Point [Hinf ]}, {Orange, Arrow [{-30 a, -10 a}],

Arrow [{15 a, 30 a}]}, {Magenta, Arrow [{-20 b, -30 b}], Arrow [{30 b, 15 b}]},

{Green, Arrow [{15 c, 25 c}], Arrow [{-30 c, -20 c}]}}], Boxed → False, Axes → False ]

Out[  ]=

These  arrows  also  give  instructions  on  traversing  this  simple  closed  curve  in projective  3 - space  .  

As an example  more  pertinent  to this  note  consider  the  following  two  rational  curves.
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In[214]:= g0 = 
2 + 3 t - 3 t2 - t3

1 - t - 3 t2 - t3
,

-1 - 2 t - 3 t2 + 3 t3

1 - t - 3 t2 - t3
,
2 + 2 t - t2 - 2 t3

1 - t - 3 t2 - t3
;

g1 = 
2 + 3 t - 5 t2 - t3

-2 - 4 t - t3
,
1 + t - t2 + 3 t3

-2 - 4 t - t3
,
7 + t + 2 t2 - 2 t3

-2 - 4 t - t3
;

In[216]:= G0 = rncGetProjectiveForm [g0]

G1 = rncGetProjectiveForm [g1]

Out[216]= 2 + 3 t - 3 t
2
- t

3
, -1 - 2 t - 3 t

2
+ 3 t

3
, 2 + 2 t - t

2
- 2 t

3
, 1 - t - 3 t

2
- t

3

Out[217]= 2 + 3 t - 5 t
2
- t

3
, 1 + t - t

2
+ 3 t

3
, 7 + t + 2 t

2
- 2 t

3
, -2 - 4 t - t

3

In[218]:= lim0 = projectiveLimitMD [G0, t → ∞]

lim1 = projectiveLimitMD [G1, t → ∞]

Out[218]= {1, -3, 2}

Out[219]= {1, -3, 2}

Thus  these  curves  intersect  at {1,  -3,  2}.

2. The Affine Linear Case

As an alternate  to the  brute  force  method  we  can  implicitize  both  curves  and  directly  solve  for   com -

mon  points,  then  work  backwards,  if necessary,  to find  the  parameter  values.   As  explained  above  these  

might  not  actually  exist.   The  reason  for  looking  at this  separately  is that  we  will  not  be using  NSolve  

which  does  not  work  with  overdetermined  numerical  systems.  

 The   affine  linear  case  is much  simpler  since  we  can  use  numerical  linear  algebra  where  we  can  control  

the  precision  and  use  simpler  implitizing  methods  from  my  Space  curve  Book.   We  do  that  first.

First  we  recall  from  Section  1.1  of my  Plane  Curve  Book  that   we  have  a function  that  finds  the  implicit  

equation  of a plane  line  from  two  points,  one  of which  can  be infinite.   So  given,  say,  parametric  line  

{1+2t,3+4t}  then  {1,  3} is the  point  where  t=0  and  {2,4}  is the  tangent  direction  which  we  viewed  as the  

infinite  point  {2,4,0}.   So  our   implicit  equation  is

In[  ]:= line2D [{1, 3}, {2, 4, 0}, x, y]

Out[  ]= 0.759336 + 1.51867 x - 0.759336 y

This  works  also  in MD,  so given  a parametric  line  in 4 dimensions
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In[  ]:= parl1 = {1 + 2 t, 3 + 4 t, 5 + 6 t, 7 + 8 t}

p1 = parl1 /. {t → 0}

q1 = Append [(parl1 - p1) /. {t → 1}, 0]

eq1 = lineMD [p1, q1, {x, y, z, w}]

Out[  ]= {1 + 2 t, 3 + 4 t, 5 + 6 t, 7 + 8 t}

Out[  ]= {1, 3, 5, 7}

Out[  ]= {2, 4, 6, 8, 0}

Out[  ]= {-0.18234 - 0.432366 w - 0.508102 x + 0.0368185 y + 0.72131 z,

-0.436537 + 0.309304 w - 0.663355 x + 0.326401 y - 0.408888 z,

0.419747 - 0.342623 w + 0.0423441 x + 0.831929 y - 0.111904 z}

we get   a system  of 3 equations  in 4 variables.   We  can  do  the  same  for  the  second  parametric  line  and  

join  the  2 equations.   Rather  than  trying  to solve  6 equations  in 4 unknowns  we  think  of homogenizing  

this  system  and  solving  for  0, which  is just  finding  the  nullspace  of the  6×5 Sylvester  matrix  of order  1 

which  has  rank  4.  We  work  carefully  with  the  numerics  by using  the  SVD  getting  a vector  nl of length  5 

which  is a point  in projective  4-space  with  last  coordinate  0.   If the  first  variable  of nl is not  zero  there  is 

an affine  answer  which  is obtained  by dividing   nl by  its  first  component  and  then  discarding  the  

resulting  1. If the  rank  of the  Sylvester  matrix  was  not  4 either  there  is no  solution  (rank=5)  or possibly  

several  solutions  or even  the  lines  could  be the  same.

Here  is the  code,  preceded   by  two  linear  algebra  subroutines.  These  have  been  added  to my  Global -

FunctionsMD.  

In[204]:= matrixrank [M_, tol_] := Module {s, k, l},

s = SingularValueList [N[M], Tolerance → 0];

If[s〚1〛 < tol, Return [0]];

l = Length [s];

s = s  s〚1〛;
k = 1;

While [k ≤ l, If[s〚k〛 < tol, Return [k - 1], k++]];

k - 1;

In[205]:= nullspace [M_, tol_] :=

Take [SingularValueDecomposition [M]〚3〛, All, - (Dimensions [M]〚2〛 - matrixrank [M, tol])]
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In[206]:= pLineIntersectionMD [L1_, L2_, t_, X_, tol_] :=

Module {n, cr1, cr2, p1, p2, v1, v2, eq1, eq2, S, r, ans},

n = Length [X];

If[Length [L1] ≠ n, Echo ["Line 1 error"]; Abort []];

If[Length [L2] ≠ n, Echo ["Line 2 error"]; Abort []];

p1 = Chop [L1 /. {t → 0}];

v1 = Append [Chop [(L1 - p1) /. {t → 1}], 0];

eq1 = lineMD [p1, v1, X];

p2 = Chop [L2 /. {t → 0}];

v2 = Append [Chop [(L2 - p2) /. {t → 1}], 0];

eq2 = lineMD [p2, v2, X];

S = sylvesterMD [Join [eq1, eq2], 1, X];

r = matrixrank [S, tol];

If[r < n, Return [Fail ]];

If[r > n, Return [{}]];

ans = Flatten [nullspace [S, tol]];

IfAbs[ans〚1〛] < tol, RotateLeft [Chop [ans, tol], 1], Take ans  ans〚1〛, -n


As an example  we  take  the  following  parametric  line  and  find  its  intersection  with  the  line  parl1 above.

In[  ]:= parl2 = {4.857409341135908` - 0.44145714818604453` t,

11.00848757377149` + 0.02627731817798784` t, 16.725434723479104` -

0.850047295730326` t, 23.0195911974063` + 0.0606538619390089` t};

In[  ]:= pLineIntersectionMD [parl1, parl2, t, {x, y, z, w}, dTol ]

Out[  ]= {5., 11., 17., 23.}

Checking  : 

In[  ]:= t0 = t /. NSolve [parl1〚1〛 - 5]〚1〛
s0 = t /. NSolve [parl2〚1〛 - 5]〚1〛
Flatten [parl1 /. {t → t0}]

Flatten [parl2 /. {t → s0}]

Out[  ]= 2.

Out[  ]= -0.323

Out[  ]= {5., 11., 17., 23.}

Out[  ]= {5., 11., 17., 23.}

The  following  two  lines  3-space  intersect  in the  infinite  plane  in a looser  tolerance

10     IRCv4.nb



In[  ]:= l26 = {1.` - 2.` t, 0.15469892331131768` + 1.9999999999246267` t, -2.3093978465294582` };

l27 = {1.` - 2.` t, -0.42264892323998693` + 1.999999999999317` t, -1.1547021535217088` };

pLineIntersectionMD [l26, l27, t, {x, y, z}, dTol ]

pLineIntersectionMD [l26, l27, t, {x, y, z}, 1.*^-10 ]

Out[  ]= {}

Out[  ]= {-0.707107 , 0.707107 , 0, 0}

3. Implicitization

The  method  for  affine  linear  lines  may  work  more  generally  with  care  using  the  implictization  method  

of my  space  curve  book  which  converts  rational  parametric  curves  into  affine  curves.  In low  degrees  we  

may  be able  to automate  this  part  of the  process,  but  in general  we  will  not  try  to do  this  because  

special  handling  may  be warranted.  Here  is an example

Let  f5 be the  twisted  cubic  curve

In[  ]:= f5 = {t, t^2, t^3};

We  know  an implicitization  for  f5

In[  ]:= F5 = {y^2 - x z, x y - z, x^2 - y}

Out[  ]= y2 - x z, x y - z, x
2
- y

For  our  other  curve  let

In[  ]:= f6 = 2.414213562373095` t, 1.2071067811865475` - 1.2071067811865475` t2,

0.8535533905932736` + 0.8535533905932736` t2
Out[  ]= 2.41421 t, 1.20711 - 1.20711 t

2
, 0.853553 + 0.853553 t

2

To implicitize  this  curve  we  let

In[  ]:= A = {{0.`, 2.414213562373095` , 0.`}, {-1.2071067811865475` , 0.`, 1.2071067811865475` },

{0.8535533905932736` , 0.`, 0.8535533905932736` }, {0.`, 0.`, 1.`}};

A // MatrixForm

Out[  ]//MatrixForm=

0. 2.41421 0.

-1.20711 0. 1.20711

0.853553 0. 0.853553

0. 0. 1.

In[  ]:= F6 = FLTMD [tBasis2, A, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. - 0.414214 y - 0.585786 z, -0.5 x
2
- 0.5 y

2
+ 1. z

2

So we  simply  solve  the  implicit  equations
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In[  ]:= NSolve [Join [F5, F6]]

Out[  ]= {}

We  have  an overdetermined  system  of 5 equations  in 3 unknowns  with  one  equation  being  numeric.   

Thus  NSolve  will  not  solve  this  seeing  this  as inconsistent.   But  we  can  check  with  my  Bézout  theorem,  

the  proved  part,  in the  space  curve  book  to see  if there  should  be a solution.   For  this  it is enough  to 

take  m  to be the  maximum  total  degree  of any  equation  or any  larger  number.   Here  we  try  m = 3.  If the  

Sylvester  matrix  has  maximal  rank,  alternatively  the  nullspace  is {0}  for  a loose  tolerance,  then  we  can  

conclude  that  there  are  no  solutions.    

In[  ]:= S3 = sylvesterMD [Join [F5, F6], 3, {x, y, z}];

Dimensions [S3]

Out[  ]= {26, 20}

Now  the  numerical  matrix  rank  is given  using  our  procedure  above

In[  ]:= matrixrank [S3, dTol ]

Out[  ]= 19

So the  nullspace  will  have  rank  1

In[  ]:= ns = Flatten [nullspace [S3, dTol ]];

ns  ns〚1〛
Out[  ]= {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}

But  in the  rank  one  case  we  can  guess  from  the  form  of fVecMD  that  since  the  first  component  is 1 then  

the  point  will  be  given  by the  next  3 components,  thus  guess

p = {1, 1, 1}.

Obviously  the  twisted  cubic  goes  through  this  point.

In[  ]:= f5 /. {t → 1}

Out[  ]= {1, 1, 1}

But  for  f6 we  need  to find  a parameter  value.   The  brute  force  method  suggests  we  calculate

In[  ]:= t6 = t /. NSolve [f6〚1〛 - 1, t]〚1〛
Out[  ]= 0.414214

In[  ]:= f6 /. {t → t6}

Out[  ]= {1., 1., 1.}

so we  see  the  curves  do  intersect  at {1,  1, 1}.

If the  matrix  rank  of S3  had  been  20 then  one  might  try  a looser  tolerance  or higher  m.   If it had  been  

less  than  19 then  one  would  expect  to have  two  or more  intersection  points.    In this  case  may  wish  to 

square  the  system  and  check  solutions  as is done  with  numerical  system  solvers,  use  Gauss  Newton,  

brute  force  or  projection,  as in section  5.  Mathematica  users  also  have  the  option  of directly  using  the  
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built  in function  FindInstance  in the  non-numeric  case.  For  the  example  above  note

In[  ]:= f6s = f6 /. {t → s};

FindInstance [f5 ⩵ f6s, {t, s}]

FindInstance [f5 ⩵ f6s, {t, s}, 2]

Out[  ]= {{t → 1., s → 0.414214 }}

Out[  ]= {}

So FindInstance agrees  that  this  exact  system  has  1 but  not  2 solutions.

4. Hybrid method

We  may  have  occasion  to find  the  intersection  of two  curves,  one  given  by a parameterization  and  one

given  implicitly.   As  an example  consider  the  curves  above

In[  ]:= f5 = {t, t^2, t^3};

f6 = 2.414213562373095` t, 1.2071067811865475` - 1.2071067811865475` t2,

0.8535533905932736` + 0.8535533905932736` t2;

The  first  is just  the  twisted  cubic  given  implicitly  by  

In[  ]:= F5 = twCubic

Out[  ]= -y2 + x z, -x
2
+ y, -x y + z

We  proceed  by evaluating  the  implicit  curve  on  the  parametric  curve.

In[  ]:= f56 = Expand [F5 /. Thread [{x, y, z} → f6]]

Out[  ]= -1.45711 + 2.06066 t + 2.91421 t
2
+ 2.06066 t

3
- 1.45711 t

4
,

1.20711 - 7.03553 t
2
, 0.853553 - 2.91421 t + 0.853553 t

2
+ 2.91421 t

3

We  need  to find  t making  f56 = 0.  In an exact  case  NSolve  might  be  able  to do  this,  numerically  we  first  

find  a solution  to one  component  and  apply  to f56

In[  ]:= sol56 = NSolve [f56〚1〛]
Out[  ]= {{t → -0.707107 - 0.707107 ⅈ}, {t → -0.707107 + 0.707107 ⅈ}, {t → 0.414214 }, {t → 2.41421 }}

In[  ]:= f56 /. sol56

Out[  ]= 0. - 6.66134 × 10
-16 ⅈ, 1.20711 - 7.03553 ⅈ, 4.97487 + 0.853553 ⅈ,

0. + 6.66134 × 10
-16 ⅈ, 1.20711 + 7.03553 ⅈ, 4.97487 - 0.853553 ⅈ,

1.66533 × 10
-16

, -2.22045 × 10
-16

, -2.22045 × 10
-16 , -3.55271 × 10

-15
, -39.799, 39.799 

We  see  the  third  answer  is the  only  reasonable  one.   Therefore  the  common  point  is p where
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In[  ]:= p = f6 /. sol56〚3〛
F5 /. Thread [{x, y, z} → p]

Out[  ]= {1., 1., 1.}

Out[  ]= 1.11022 × 10
-16

, -1.11022 × 10
-16

, 0.

5. Projection

If we  project  on  the  first  few  coordinates  then  we  are  essentially  doing  the  brute  force  method.   But,  as 

in my  Space  Curve  Book  we  can  get  better  results  with  random  projections,  especially  to the  plane  

where  we  can  make  sure  we  don’t  miss  any  intersection  points.   Again  here  is an example.

f7 = 
2 t

1 + t2
,
1 - t2

1 + t2
,

t

1 + t2
;

f8 = 
1.5` + 2.` t + 1.5` t2

1.` + t2
,
1 - t2

1 + t2
, -

t

1 + t2
;

Plotting  it seems  like  there  are  two  real  intersection  points.

In[  ]:= ParametricPlot3D [{f7, f8}, {t, -20, 20}, PlotRange → All]

Out[  ]=

To deal  with  all  coordinates  at once  we  project  with  a pseudorandom  projection,  in this  case  we  will

use  our  pseudorandom  FLT  fprd3D.

In[  ]:= h7 = Simplify [fltMD [f7, fprd3D ]]

h8 = Simplify [fltMD [f8, fprd3D ]]

Out[  ]= 
0.952289 - 0.610395 t - 0.952289 t2

1. + t2
,

-0.0454808 + 0.705012 t + 0.0454808 t2

1. + t2


Out[  ]= 
0.494493 - 0.610395 t - 1.41009 t2

1. + t2
,

-0.258347 - 1.27266 t - 0.167386 t2

1. + t2


We  could  either  implicitize  both  or use  brute  force.     In either  case  we  expect  degree  2 for  both  so by 

Bézout  we  expect  4 complex  solutions.   Brute  force  is easier  here
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In[  ]:= h8s = h8 /. {t → s}

Out[  ]= 
0.494493 - 0.610395 s - 1.41009 s2

1. + s2
,

-0.258347 - 1.27266 s - 0.167386 s2

1. + s2


In[  ]:= sol78 = NSolve [h7 - h8s]

Out[  ]= {{s → -2.21525, t → 2.21525 }, {s → -2.33576, t → 2.45276 },

{s → 0.0771368 , t → -0.867668 }, {s → -0.451416 , t → 0.451416 }}

so we  actually  get  4 real  solutions.   As  points  they  can  be given  by

In[  ]:= ParametricPlot [{h7, h8}, {t, -20, 20}, PlotRange → All]

Out[  ]=

-1.5 -1.0 -0.5 0.5 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

In[  ]:= Q78 = h1 /. sol78

Out[  ]= {{-0.858778 , 0.294462 }, {-0.894218 , 0.278984 },

{0.436422 , -0.355397 }, {0.400982 , 0.234297 }}

  Since  they  are  all  real  we  can  fiber  li�  as  in my  Space  Curve  Book  section  2.8.   But  we  need  implicitiza -

tions  of our  original  curves.   Let

B1 = {{0, 2, 0}, {-1, 0, 1}, {0, 1, 0}, {1, 0, 1}};

B2 = {{1.5, 2, 1.5}, {-1, 0, 1}, {0, -1, 0}, {1, 0, 1}};

Then  the  implicit  equations  are

In[  ]:= F7 = FLTMD [tBasis2, B1, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= -0.5 x + 1. z, 1. - 1. x
2
- 1. y

2

In[  ]:= F8 = FLTMD [tBasis2, B2, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. - 0.666667 x - 1.33333 z, -0.2 x
2
+ 0.45 y

2
- 0.8 x z + 1. z

2

So we  can  try  to li�  using  fFiberMD
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In[  ]:= a7 = fFiberMD [F7, prd3D, Q78〚1〛, {x, y, z}, 1.*^-8 ]〚1〛
b7 = fFiberMD [F7, prd3D, Q78〚2〛, {x, y, z}, 1.*^-8 ]〚1〛
c7 = fFiberMD [F7, prd3D, Q78〚3〛, {x, y, z}, 1.*^-8 ]〚1〛
d7 = fFiberMD [F7, prd3D, Q78〚4〛, {x, y, z}, 1.*^-8 ]〚1〛

Out[  ]= {0.75, -0.661438 , 0.375 }

Out[  ]= {0.699188 , -0.714938 , 0.349594 }

Out[  ]= {-0.99001, 0.141, -0.495005 }

Out[  ]= {0.75, 0.661438 , 0.375 }

This  gives  4 points  on  f7 as expected  with  4 points  on  f8

In[  ]:= a8 = fFiberMD [F8, prd3D, Q78〚1〛, {x, y, z}, 1.*^-8 ]〚1〛
b8 = fFiberMD [F8, prd3D, Q78〚2〛, {x, y, z}, 1.*^-8 ]〚1〛
c8 = fFiberMD [F8, prd3D, Q78〚3〛, {x, y, z}, 1.*^-8 ]〚1〛
d8 = fFiberMD [F8, prd3D, Q78〚4〛, {x, y, z}, 1.*^-8 ]〚1〛

Out[  ]= {0.75, -0.661438 , 0.375 }

Out[  ]= {0.77638, -0.690199 , 0.36181 }

Out[  ]= {1.65336, 0.98817, -0.0766805 }

Out[  ]= {0.75, 0.661438 , 0.375 }

The  first  and  last  points  in both  cases  match  but  the  others  don'  t.  Thus  we  have  2 real  intersection  

points  and  no  complex  points.   The  picture  is now

In[  ]:= Show [ParametricPlot3D [{f7, f8}, {t, -20, 20}, PlotRange → All],

Graphics3D [{{Pink, Ball [a7, .03], Ball [d8, .03], Opacity [.5]},

{PointSize [Large ], Black, Point [{b7, c7, b8, c8}]}}]]

Out[  ]=
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If we  make  a change  to f7 but  leave  f8 alone

f7a = 
0.5` t

1 + t2
,
0.25` × 1 - t2

1 + t2
,

t

1 + t2
;

In[  ]:= Show [ParametricPlot3D [{f7a, f8}, {t, -20, 20}, PlotRange → All],

Graphics3D [{Red, PointSize [Large ]}]]

Out[  ]=

The  implicitizaton  of f7a is now

B1a = {{0, .5, 0}, {-.25, 0, .25}, {0, 1, 0}, {1, 0, 1}};

In[  ]:= F7a = FLTMD [tBasis2, B1a, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= -2. x + 1. z, 1. - 16. x
2
- 16. y

2

There  appear  to be  no  real  intersection  points.   But  projecting  and  brute  force  gives

In[  ]:= h7a = Simplify [fltMD [f7a, fprd3D ]]

h8s = Simplify [fltMD [f8, fprd3D ]] /. {t → s}

Out[  ]= 
0.238072 - 0.152599 t - 0.238072 t2

1. + t2
,

-0.0113702 + 0.917879 t + 0.0113702 t2

1. + t2


Out[  ]= 
0.494493 - 0.610395 s - 1.41009 s2

1. + s2
,

-0.258347 - 1.27266 s - 0.167386 s2

1. + s2


In[  ]:= sol78a = NSolve [h7a - h8s];

Q78a = h7a /. sol78a

Out[  ]= {{0.0457379 , 0.398648 }, {0.203249 - 0.189871 ⅈ, -0.602879 - 0.127114 ⅈ},
{0.203249 + 0.189871 ⅈ, -0.602879 + 0.127114 ⅈ}, {-0.166361 , 0.424051 }}

again  4 solutions,  this  time  two  are  complex.    Li�ing  the  two  complex  solutions  gives
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In[  ]:= fFiberMD [F7a, prd3D, Qa〚1〛, {x , y, z}, 1.*^-8, complex → True ]

fFiberMD [F8, prd3D, Qa〚1〛, {x , y, z}, 1.*^-8, complex → True ]

Out[  ]= {{0.220095 , 0.118567 , 0.44019 }}

Out[  ]= {{0.523568 , 0.215827 , 0.488216 }}

In[  ]:= fFiberMD [F7a, prd3D, Qa〚2〛, {x , y, z}, 1.*^-8, complex → True ]

fFiberMD [F8, prd3D, Qa〚2〛, {x , y, z}, 1.*^-8, complex → True ]

Out[  ]= {{-0.325707 - 0.074777 ⅈ, 0.109047 - 0.223349 ⅈ, -0.651414 - 0.149554 ⅈ}}
Out[  ]= {{2.05068 + 0.209221 ⅈ, 0.870652 - 0.132331 ⅈ, -0.275341 - 0.10461 ⅈ}}

In[  ]:= fFiberMD [F7a, prd3D, Qa〚3〛, {x , y, z}, 1.*^-8, complex → True ]

fFiberMD [F8, prd3D, Qa〚3〛, {x , y, z}, 1.*^-8, complex → True ]

Out[  ]= {{-0.325707 + 0.074777 ⅈ, 0.109047 + 0.223349 ⅈ, -0.651414 + 0.149554 ⅈ}}
Out[  ]= {{2.05068 - 0.209221 ⅈ, 0.870652 + 0.132331 ⅈ, -0.275341 + 0.10461 ⅈ}}

In[  ]:= fFiberMD [F7a, prd3D, Qa〚4〛, {x , y, z}, 1.*^-8, complex → True ]

fFiberMD [F8, prd3D, Qa〚4〛, {x , y, z}, 1.*^-8, complex → True ]

Out[  ]= {{0.228481 , -0.101471 , 0.456963 }}

Out[  ]= {{0.500104 , -0.0144187 , 0.499948 }}

So in this  space  curve   situation,  unlike  the  plane,  there  are  really  no  intersections,  real  or  complex.

For  infinite  points  as in the  brute  force  method  it is easiest  to calculate  the  infinite  points  of each  curve  

and  compare.   My  global  function  infinitePointsMD  will  give  real  and  complex  infinite  points  for   

implicitly  defined  curves.

6. Multiplicity

Given  my  previous  work  in the  area  I would  be remiss  not  to include  a discussion  of multiplicity  of 

intersection.   This  is covered  well  for  plane  implicit  curves  in my  Plane  Curve  Book  where  curves  are  

always  intersecting.   For   space  curves  even  intersection  is rare  and  multiple  intersections  are  more  

rare.   But  they  can  happen.

The  most  obvious  clue  that  there  will  be  a multiple  intersection  is when  tangent  vectors  are  in the  same  

direction.   Note  that  for  parameterized  curves  the  tangent  vector  at a point  is just  given  by differentia -

tion.

In[207]:= f9 = {t, t^3, t^2};

f10 = {2 t, -2 t^3, t^3};

These  curves  intersect  obviously  at {0,0,0}
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D[f9, t] /. {t → 0}

D[f10, t] /. {t → 0}

Out[  ]= {1, 0, 0}

Out[  ]= {2, 0, 0}

We  do  have  a multiple  intersection  at {0,0,0}

ParametricPlot3D [{f9, f10}, {t, -1, 1}]

Out[  ]=

If one  curve  is singular  at the  intersection  point  then  it’s  tangent  vector  is zero  so is dependent  to any  

vector  so we  will  automatically  have  a multiple  intersection  at that  point.

More  specifically  if we  have  several  curves  {f1, f2 , …, fk} through  the  same  point  p0 at  the  same  parame -

ter  value,  say  t = 0 can  calculate  their   tangent  vectors  jointly  by

 D[{f1,f2,…,fk },t]/.{t -> 0}.  We  need  the  rank  of this  matrix  to have  rank  k to be non-singular,  

anything  less  will  be  a singular  point.

Consider  the  following

In[  ]:= matrixrank [D[{{t, 0}, {0, t}}, t] /. {t → 0}, dTol ]

matrixrank [D[{{t, 0}, {t, t}, {0, t}}, t] /. {t → 0}, dTol ]

matrixrank [D[{{t, 0, 0}, {0, t, 0}, {0, 0, t}}, t] /. {t → 0}, dTol ]

Out[  ]= 2

Out[  ]= 2

Out[  ]= 3

To find  the  multiplicity  we  need  to implicitize  the  curves,  then  we  should  have  enough  equations  from  

the  two  curves  to get  a system  with  only  isolated  solutions  so we  can  use  our  multiplicity  calculation.   

For  the  present  example,  f9,f10 we  note  that  f9 is simply  the  twisted  cubic  with  two  coordinates  

flipped  so by inspection  the  implicitatizaton  is

In[  ]:= F9 = x y - z2, -x2 + z, y - x z;

For  f10  we  use  our  standard  procedure  

In[  ]:= A10 = {{0, 0, 2, 0}, {-2, 0, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, 1}};

F10 = FLTMD [tBasis3, A10, 3, {x3, x2, x1}, {x, y, z}, dTol ]
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» Initial Hilbert Function {1, 3, 6, 9}

» Final Hilbert Function {1, 3, 6, 9}

Out[  ]= 0.5 y + 1. z, 0.25 x
3
+ 1. y

In[  ]:= Note

In[  ]:= NSolve [Join [F9, F10]]

Out[  ]= {{x → 0., y → 0., z → 0.}, {x → 0., y → 0., z → 0.}}

so the  origin  is the  only  affine  intersection  point.   Mathematica  gives  multiplicity  2 which  we  confirm  

with

In[  ]:= multiplicityMD [Join [F9, F10], {0, 0, 0}, {x, y, z}, dTol ]

Out[  ]= 2

Here  is a more  complicated  example  with  a higher  multiplicity.

In[  ]:= f11 = {t, t + t^4, t^3}

f12 = {t, t + t^3, t^4}

Out[  ]= t, t + t
4
, t

3

Out[  ]= t, t + t
3
, t

4

In[  ]:= D[f11, t] /. {t → 0}

D[f12, t] /. {t → 0}

Out[  ]= {1, 1, 0}

Out[  ]= {1, 1, 0}

These  appear  to have  a  multiple  intersection  at {0,  0, 0}.

In[  ]:= A11 = {{0, 0, 0, 1, 0}, {1, 0, 0, 1, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 1}};

F11 = FLTMD [tBasis4, A11, 4, {x4, x3, x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 4, 9, 13, 17 }

» Final Hilbert Function {1, 4, 9, 13, 17 }

Out[  ]= -1. x + 1. y - 1. x z, -1. x
3
+ 2. x

2
y - 1. x y

2
+ 1. z

3
, 1. x

3
- 1. x

2
y + 1. z

2
, -1. x

3
+ 1. z

In[  ]:= Expand [F11 /. Thread [{x, y, z} → f11]]

Out[  ]= 0. - 3.33067 × 10
-16

t, 0. - 2.22045 × 10
-16

t
3
- 2.22045 × 10

-16
t
6
,

0. - 5.55112 × 10
-16

t
6
, 1.11022 × 10

-15
t
3

In[  ]:= A12 = {{0, 0, 0, 1, 0}, {0, 1, 0, 1, 0}, {1, 0, 0, 0, 0}, {0, 0, 0, 0, 1}};

F12 = FLTMD [tBasis4, A12, 4, {x4, x3, x2, x1}, {x, y, z}, dTol ]
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» Initial Hilbert Function {1, 4, 9, 13, 17 }

» Final Hilbert Function {1, 4, 9, 13, 17 }

Out[  ]= 1. x2 - 1. x y + 1. z, -1. x
3
+ 3. x

2
y - 3. x y

2
+ 1. y

3
- 1. x z

2
,

1. x
2
- 2. x y + 1. y

2
- 1. x

2
z, -1. x - 1. x

3
+ 1. y

In[  ]:= Expand [F12 /. Thread [{x, y, z} → f12]]

Out[  ]= 1.11022 × 10
-15

t
2
+ 8.88178 × 10

-16
t
4
,

-2.22045 × 10
-16

t
3
+ 1.77636 × 10

-15
t
5
+ 2.22045 × 10

-15
t
7
+ 8.88178 × 10

-16
t
9
,

7.77156 × 10
-16

t
2
+ 8.88178 × 10

-16
t
4
- 2.22045 × 10

-16
t
6
, -7.77156 × 10

-16
t + 1.22125 × 10

-15
t
3

In[  ]:= NSolve [Join [F11, F12]]

Out[  ]= {x → 1., y → 2., z → 1.},

x → 5.93026 × 10
-15

- 8.65131 × 10
-8 ⅈ, y → 5.93026 × 10

-15
- 8.65131 × 10

-8 ⅈ, z → 0.,
x → 5.93026 × 10

-15
+ 8.65131 × 10

-8 ⅈ, y → 5.93026 × 10
-15

+ 8.65131 × 10
-8 ⅈ, z → 0.,

{x → 0., y → 0., z → 0.}

In[  ]:= multiplicityMD [Join [F11, F12], {0, 0, 0}, {x, y, z}, dTol ]

Out[  ]= 3

So the  multiplicity  is 3.  We  can  see  what  happens  a�er  psuedorandom  projection

In[  ]:= h11 = FLTMD [F11, fprd3D, 4, {x, y, z}, {x, y}, 1.*^-9 ]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14 }

» Final Hilbert Function {1, 3, 6, 10, 14 }

Out[  ]= 0.289591 x + 0.272543 x
2
- 3.67538 x

3
+ 0.000017299 x

4
+

1. y + 2.24529 x y + 0.25229 x
2
y + 0.00144884 x

3
y + 4.50345 y

2
+

3.1214 x y
2
+ 0.0455044 x

2
y
2
+ 6.70231 y

3
+ 0.635189 x y

3
+ 3.32494 y

4

In[  ]:= h12 = FLTMD [F12, fprd3D, 4, {x, y, z}, {x, y}, 1.*^-9 ]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14 }

» Final Hilbert Function {1, 3, 6, 10, 14 }

Out[  ]= 0.289591 x - 0.482243 x
2
+ 2.98358 x

3
- 5.22287 x

4
+ 1. y -

2.84001 x y + 13.0495 x
2
y - 4.05659 y

2
+ 0.636495 x y

2
+ 4.44236 y

3
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In[  ]:= NSolve [{h11, h12}]

Out[  ]= {x → -0.275899 - 2.09403 ⅈ, y → -2.32073 - 0.603077 ⅈ},
{x → -0.275899 + 2.09403 ⅈ, y → -2.32073 + 0.603077 ⅈ},
{x → 1.1877 - 0.863081 ⅈ, y → -1.245 - 1.33413 ⅈ},
{x → 1.1877 + 0.863081 ⅈ, y → -1.245 + 1.33413 ⅈ}, {x → 1.59938, y → 0.755961 },

{x → -0.762615 + 1.67895 ⅈ, y → -0.417967 - 1.601 ⅈ},
{x → -0.762615 - 1.67895 ⅈ, y → -0.417967 + 1.601 ⅈ},
{x → -0.329327 + 0.487255 ⅈ, y → -0.329981 - 0.609184 ⅈ},
{x → -0.329327 - 0.487255 ⅈ, y → -0.329981 + 0.609184 ⅈ},
{x → 0.257676 - 0.421795 ⅈ, y → -0.126584 - 0.261041 ⅈ},
{x → 0.257676 + 0.421795 ⅈ, y → -0.126584 + 0.261041 ⅈ},
{x → 0.0269927 - 0.217521 ⅈ, y → -0.012448 + 0.102628 ⅈ},
{x → 0.0269927 + 0.217521 ⅈ, y → -0.012448 - 0.102628 ⅈ},
x → 6.32415 × 10

-8
, y → -1.83142 × 10

-8,
x → -6.32415 × 10

-8
, y → 1.83142 × 10

-8, {x → 0., y → 0.}

Note  the  16 solutions  as these  cubic  space  curves  project  to 4th  degree  plane  curves.   Three  of the  

solutions  are  essentially  zero  so the  Mathematica  multiplicity  is 3.  This  agrees  with  our  multiplicity.

In[  ]:= multiplicityMD [{h11, h12}, {0, 0}, {x, y}, dTol ]

Out[  ]= 3

The  multiplicity  stays  the  same  under  projection.   In general  this  will  happen  with  a random  or pseudo -

random  projection  mapping  an intersection  point  if two  curves  in ℝn to the  intersection  in ℝ2.  For  a 

non-random  projection  it can  happen  that  the  intersection  in the  plane  has  higher  multiplicity.   In 

particular  there  will  generally  be  non-intersection  points  mapping  to an intersection  point  so the  

multiplicity  will  go  from  0 to a positive  number.
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In[  ]:= ParametricPlot3D [{f11, f12}, {t, -1, 1.3}]

Out[  ]=

In[  ]:= ContourPlot [{h11 ⩵ 0, h12 ⩵ 0}, {x, -1, 2}, {y, -1, 1}]

Out[  ]=
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