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H-Basis

I Möller and Sauer
At a very early time, when even the notion of

ideals was not commonly accepted, Macaulay
introduced H-bases. These special bases of
polynomial ideals are also helpful in various branches
of numerical analysis.

I Macaulay

The distinctive property of an H-basis
(F1,F2, . . . ,Fk) of M is than any member F of M
can be put in the form A1F1 + A2F2 + · · ·+ AkFk

where AiFi (i = 1, 2, . . . , k) is not of greater degree
than F . Every module [ideal] has an H-basis, which
may necessarily consist of more members than would
suffice for a basis in general



Macaulay and Sylvester Arrays

Let f = x − y , g = z + x2 − y2 in C[x , y , z ], F = [f , g ]

Macaulay Array of F of order 2 at (0, 0, 0)

1 x y z x2 xy xz y2 yz z2

f 0 1 −1 0 0 0 0 0 0 0
g 0 0 0 1 1 0 0 −1 0 0

xf 0 0 0 1 −1 0 0 0 0 0
yf 0 0 0 0 0 1 0 −1 0 0
zf 0 0 0 0 0 0 1 0 −1 0
xg 0 0 0 0 0 0 1 0 0 0
yg 0 0 0 0 0 0 0 0 1 0
zg 0 0 0 0 0 0 0 0 0 1

Note that rows xg , yg , zg are truncated.



Macaulay and Sylvester Arrays (continued)
Sylvester Array of F of order 2, S(F , 2)

1 x y z x2 xy xz y2 yz z2

f 0 1 −1 0 0 0 0 0 0 0
g 0 0 0 1 1 0 0 −1 0 0

xf 0 0 0 1 −1 0 0 0 0 0
yf 0 0 0 0 0 1 0 −1 0 0
zf 0 0 0 0 0 0 1 0 −1 0

Sylvester Array of ideal 〈f , g〉 of order 2, S(I, 2)

1 x y z x2 xy xz y2 yz z2

x− y 0 1 −1 0 0 0 0 0 0 0
z 0 0 0 1 0 0 0 0 0 0

x(x − y) 0 0 0 0 1 −1 0 0 0 0
y(x − y) 0 0 0 0 0 1 0 1 0 0

xz 0 0 0 0 0 0 1 0 0 0
yz 0 0 0 0 0 0 0 0 1 0
z2 0 0 0 0 0 0 0 0 0 1



Global and Local dual functionals
Let I be an ideal of C[x] = C[x1, . . . , xs ], the local ring at x̂ = 0 is

C[[x1, . . . , xs ]]/ C [[x1, . . . , xs ]]I. For j = [j1, . . . , js ], xj = x j1
1 . . . x

js
s .

A Global dual functional is a C-linear map

C[x]/I −→ C

A typical such functional is given by an infinite sum∑
j

αjX
j where Xj

(
xk
)

=

{
1 if j = k,

0 if j 6= k.

A Local dual functional is a C-linear map

C[[x]]/C[[x]]I
∣∣∣
x̂
−→ C

A typical such functional is given by a finite sum∑
|j|<n

βk∂xj [x̂], where ∂xj [x̂] ≡ 1

j1! · · · js !

∂j1+···+js

∂x j1
1 · · · ∂x js

s

∣∣∣∣∣
x̂



Global and Local dual functionals spaces as arrays

Local duals can be put in Sylvester type arrays, global in Macaulay
type. We view the dual functionals as columns.
Consider the ideal 〈f 〉 ⊆ C[x , y ] given by
f = x + 2y + x2 + 3xy + y2. The local duals are at point (0, 0),
indices on right.

Local duals order 2

1 0 0 ∂1
0 −2 1 ∂x
0 1 0 ∂y
0 0 4 ∂x2
0 0 −2 ∂xy
0 0 1 ∂y2

Global duals order 2

1 0 0 0 0 1
0 −2 1 1 0 X
0 1 0 0 0 Y
0 0 4 −4 −3 X 2

0 0 −2 1 1 XY
0 0 1 0 0 Y 2

Note the last two columns of the global duals are truncated.



Local and Global Duality

The notion of global dual functional C[x]/I → C implies that dual
functionals kill the ideal I (and similarly for local duals).
From this viewpoint say matrices A,B are dual if AB = 0 with
rowspace A the left nullspace of B and column space B the
nullspace of A.

The Sylvester array of local duals is dual to the
Macaulay matrix while the the Macaulay array of
Global duals is dual to the Sylvester array of the
ideal.



Local to Global

For i = [i1, . . . , is ], j = [j1, . . . , js ], i ≥ j means iα ≥ jα for all
1 ≤ α ≤ s. Then as functionals on C[x]

∂xj [x̂] =
∑
i≥j

(i1
j1

)
x̂ i1−j1
1 · · ·

(is
js

)
x̂ is−js
s Xi

where x̂ = (x̂1, . . . , x̂s). The left hand side is a local functional and
the right a global functional. From a matrix point of view we have
for fixed n

 Macaulay Matrix
of order n

global duals from x̂

 =

Change of Center
matrix

of order n

Sylvester Matrix
of order n

local duals at x̂





Local to Global
Change of Center Matrix

For example if s = 2 and x̂ = (1, 2) then the Change of center
matrix is

γx̂ =



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0
2 2 1 0 1 0 0 0 0 0
4 0 4 0 0 1 0 0 0 0
1 3 0 3 0 0 1 0 0 0
2 4 1 2 2 0 0 1 0 0
4 4 4 0 4 1 0 0 1 0
8 0 12 0 0 6 0 0 0 1





Local to Global, Main Theorem

Given an ideal I of C[x1, . . . , xs ], n > 0 and points
p̂i , i = 1, . . . , k of V (I) concatenate the Macaulay matrices of
order n global duals. Write Dn({p̂1, . . . , p̂k}) for this matrix.

Main Theorem, matrix form: For given n > 0 there exist finitely
many points, p̂1, . . . , p̂k , of V (I) so that the Sylvester matrix of
the ideal I of order n is the left nullspace of Dn({p̂1, . . . , p̂k}).

Corollary An H-Basis for I can be obtained from finitely many
local duals at finitely many points of V (I).

It remains an open question as to how many and what points are
needed. It is clear that it is necessary to have at least one point
from each component of V (I) . In principle, for large n, that may
be enough. In practice more points may be needed and the number
may be dependent on implementation issues as well as
algebraic-geometric factors.



The global Hilbert function

The global Hilbert function is

GHF(n) =

(
n + s

s

)
− rank S(I, n), n > 0

But if p̂1, . . . , p̂k satisfy the Main Theorem then

GHF(n) = rank Dn({p̂1, . . . , p̂k}), n > 0

For large n the values of the Hilbert function agree with a integer
valued polynomial known as the Hilbert Polynomial. This can
often be calculated independently. In particular the leading term
cd td of this polynomial can often be calculated by standard
Numerical Algebraic geometry software. In general one wants to
pick points and tolerances minimizing the global Hilbert function
retaining the correct leading term of the Hilbert Polynomial.



Algorithms
The algorithms for finding Dn({p̂1, . . . , p̂k}) [see also Mourrain, Li
and Zhi, Zeng] and S(I, n) are straight forward.

Two algorithms have been used for extracting H-bases.
MBasis1

I Calculate DN({p̂1, . . . , p̂k}) for N large enough that S(I,N)
contains an H-Basis. For n ≤ N Dn({p̂1, . . . , p̂k}) is
truncation of DN({p̂1, . . . , p̂k}) and
S(I, n) = left nullspace Dn({p̂1, . . . , p̂k}).

I For n = 1, 2, . . . calculate S(I, n) until S(I, n0) is non-empty.
Interpret entries of S(I, n0) as polynomials and set Bn0 to be
this list of polynomials.

I For n0 < n ≤ N note S(Bn−1, n) ⊆ S(I, n). If this inequality
is an equality set Bn = Bn−1. Otherwise there are rows of
S(I, n) independent of S(Bn−1, n) and add corresponding
polynomials to Bn−1 to obtain Bn.

I Output: BN



Algorithms
MBasis2

Example: I = 〈1 + x + y + xy2, 1− y2〉
Calculate S(I, 3), put this in reverse RREF form:
(monomial order 1, x , y , x2, xy , y2, x3, x2y , xy2, y3)

1 2 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 0

0 −1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 1 0
1 2 0 0 0 0 0 0 0 1


The first row is S(I, 1), the first 4 rows form S(I, 2) and the
entire matrix is S(I, 3). As in algorithm MBasis1 the minimal
H-basis is 1 + 2x + y , x + x2.
In both algorithms numerical issues have been ignored, see paper.



Applications, irreducible decomposition (factoring)

Using Mathematica 6

Function to factor or reducible variety V (fff ) to decompose.
fff=2 + 3x2 − 5x4 + x6 − 3y2 − 16x2y2 + 8x4y2 − 5y4 + 16x2y4 + 7y6 +
9xz−4x3z−2x5z−22xy2z + 11xy4z + 7x2z2−4x4z2−11x2y2z2 + x3z3

Pick x , y randomly, solve for z on surface V (fff )
P = NSolve[{f, {x,y}-RandomComplex[{-1-I,1+I},2]}]P = NSolve[{f, {x,y}-RandomComplex[{-1-I,1+I},2]}]P = NSolve[{f, {x,y}-RandomComplex[{-1-I,1+I},2]}]
p1p1p1 = {−0.2477 + 0.897805i ,−0.59133− 0.126784i , 1.03993 + 5.73923i}
p2p2p2 = {−0.2477+0.897805i ,−0.59133−0.126784i , 0.232135−0.184349i}
p3p3p3 = {−0.2477 + 0.897805i ,−0.59133−0.126784i , 0.395344 + 1.01247i}
Find global duals up to order 7 corresponding to local duals at p1p1p1.
corresponding to local duals at p1p1p1.
Timing[G1 = GDiff[{f }, {p1}, 7,X , eps]; ]Timing[G1 = GDiff[{f }, {p1}, 7,X , eps]; ]Timing[G1 = GDiff[{f }, {p1}, 7,X , eps]; ]
{1.75,Null}
Calculate Hilbert function
Timing[AFHF[G1,7, 3, eps]]Timing[AFHF[G1,7, 3, eps]]Timing[AFHF[G1,7, 3, eps]]
{0.08, {1, 4, 9, 16, 24, 30, 34, 36}}
Note Hilbert function is deficient by 1 in order 2.



Irreducible decomposition (continued)

Find quadratic of degree two in ideal of component containing p̂1.
Timing[g1 = Round[Chop[Re[SBasis[G1, 2, 3, eps]], 1.*∧-9], 1.*∧-9][[1]].X2]Timing[g1 = Round[Chop[Re[SBasis[G1, 2, 3, eps]], 1.*∧-9], 1.*∧-9][[1]].X2]Timing[g1 = Round[Chop[Re[SBasis[G1, 2, 3, eps]], 1.*∧-9], 1.*∧-9][[1]].X2]{

0.,−0.447561736 + 0.364721029x2 + 0.812282765y2 − 0.082840707xz
}

Similarly we get factors (rounded to nine digits):
g1 =g1 =g1 = −0.447561736 + 0.364721029x2 + 0.812282765y2−0.082840707xz
g2 =g2 =g2 = −0.210422444−0.537639032x2−0.327216587y2−0.748061476xz
g3 =g3 =g3 = 0.561390307− 0.134811931x2 − 0.696202238y2 + 0.426578376xz

Check: Multiply and normalize with constant term 2
f2 = Expand[(2 ∗ g1 ∗ g2 ∗ g3)/(g1[[1]] ∗ g2[[1]] ∗ g3[[1]])]f2 = Expand[(2 ∗ g1 ∗ g2 ∗ g3)/(g1[[1]] ∗ g2[[1]] ∗ g3[[1]])]f2 = Expand[(2 ∗ g1 ∗ g2 ∗ g3)/(g1[[1]] ∗ g2[[1]] ∗ g3[[1]])]
2.+ 3.x2 − 5.x4 + 1.x6 − 3.y2 − 16.x2y2 + 8.x4y2 − 5.y4 + 16.x2y4 +
7.y6 + 9.xz − 4.x3z − 2.x5z − 22.xy2z + 5.44 ∗ 10−9x3y2z + 11.xy4z +
7.x2z2 − 4.x4z2 − 11.x2y2z2 + 1.x3z3

Difference from original in bold, 2-Norm of error about 5 ∗ 10−8.



Blow up of Curve Singularity

.
Consider the plane curve

f = 8x3 + x4 + 12x2y − 20xy2 − x2y2 + 4y3 + y4

with singularity at origin. Since we don’t a priori know the tangents to
the branches we blow up using the random quadratic transformation

z =
−0.292846x + 0.999554y

0.763056x + 0.963694y

Thus we have the system {f , g} with

g = −0.292846x + 0.999554y − 0.763056xz − 0.963694yz

The solution curve has two components, one defined by x = 0, y = 0 has
multiplicity 3, the desingularized curve we want is the other component.

Intersecting curve with random hyperplane gives 8 points, we reject 3 in
the unwanted component and calculate D6({p̂1, . . . , p̂5}) for the other 5
points using tolerance ε = 10−12.



Blowing up (continued)

Timing[G = GDiff[{f, g}, P, 6, X, eps];]Timing[G = GDiff[{f, g}, P, 6, X, eps];]Timing[G = GDiff[{f, g}, P, 6, X, eps];]
{4.44,Null}
We next find a minimal H-basis

Timing[B = MBasis1[G, 6, X, eps];]Timing[B = MBasis1[G, 6, X, eps];]Timing[B = MBasis1[G, 6, X, eps];]
FinalTolerance = 7.74628 ∗ 10−6

Degrees {2, 4, 4, 4, 4}
AffineHilbertFunction {1, 4, 9, 16, 21, 26, 31}
{1.41,Null}
which gives a curve of degree 5.
To find the points of this curve over (0, 0) we evaluate all 5 members of
the H-basis at x = 0, y = 0, then solve for z . The common solution is,
each after rounding to final tolerance above,

{−1.7727, 0.479915, 0.810186}

Calculating the Jacobian at the points (0, 0,−1.7727) etc. we find these
are non-singular points, and we can project the tangent lines to
−0.35787x − 0.914374y , 0.775099x − 0.631633y , 0.97079x − 0.233125y



Curve (blue) near (0, 0) with tangent lines.
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H. M. Möller and T. Sauer, H-bases for polynomial
interpolation and system solving, Adv. in Comp. Math. 12 (2000),
pp. 335-362.

B. Mourrain, Isolated points, duality and residues, J. of Pure and
Applied Algebra, 117-118 (1996), pp. 469-493.

Z. Zeng, The closedness subspace method for computing the
multiplicity structure of a polynomial system, in Interactions of
Classical and Numerical Algebraic Geometry, Contemp. Math. 496,
AMS, 2009, pp. 347–362.


