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4.6 Newton’s Identities

While it was noticed early that the roots of a polynomial are not rational expressions of
the coefficients, the mathematician Girard noticed in 1629 that certain expressions in
the roots were rational expressions of the coefficients.

Suppose we consider the polynomial equation

t3 + p1t
2 + p2t + p3 = 0

Let x1, x2, x3 be the roots. Then Girard noted that

x1 + x2 + x3 = −p1

x2
1 + x2

2 + x2
3 = p2

1 − 2p2

x3
1 + x3

2 + x3
3 = −p3

1 + 3p1p2 − 3p3

x4
1 + x4

2 + x4
3 = p4

1 − 4p2
1p2 + 4p1p3 + 2p2

2

While it seems clear that we can continue, it was not clear to Girard what the general
pattern was. In fact, the general pattern is quite complicated but Isaac Newton published
in 1683 a simple set of recursive equations. Note that for convenience we are writing
the coefficients of the polynomial in a non-standard order.

Theorem 4.6.1 (Newton’s Identities)Let

f(t) = tn + p1t
n−1 + p2t

n−2 + · · ·+ pn−1t + pn

be a polynomial with roots (counted according to multiplicity)x1, x2, . . . , xn. For j =
1, 2, 3, . . . let

sj = xj
1 + xj

2 + · · ·+ xj
n

Setpk = 0 for k > n. Then for allj > 0

sj + p1sj−1 + p2sj−2 + · · ·+ pj−1s1 + jpj = 0

What this theorem says is that we have the equations

s1 + p1 = 0

s2 + p1s1 + 2p2 = 0

s3 + p1s2 + p2s1 + 3p3 = 0

s4 + p1s3 + p2s2 + p3s1 + 4p4 = 0
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The first equation allows us to solve fors1 in terms ofp1. Then since we knows1

and thepk the second equation allows us to solve fors2. Now we knows1, s2 and
the pk so we can solve the third equation fors3. We can continue in this manner to
find s4, s5 and so on for as long as we like. The reader should check that solving the
four equations gives Girard’s formulas above. Newton did not bother to supply a proof
for these identities. We will sketch a proof modified fromUspensky. We will work
with formal power series, i.e. expressions of the form

∑∞
i=0 aix

i . By formal we mean
that we won’t worry about convergence, we will only do algebraic operations. The
operations of sum and product for formal power series are as defined for polynomials
in Chapter 1 and we obtain an integral domain. The main surprise is that formal power
series with non-zero constant term have multiplicative inverses. In particular we have
thegeometric series

1

1− x
= 1 + x + x2 + x3 · · ·

Proof: We start with the factorization

f(t) = tn + p1t
n−1 + · · ·+ pn = (t− x1)(t− x2) · · · (t− xn)

We then take thelogarithmic derivative

f ′(t)

f(t)
=

1

t− x1

+
1

t− x2

+ · · · 1

t− xn

Multiplying by t gives

t
f ′(t)

f(t)
=

t

t− x1

+
t

t− x2

+ · · · t

t− xn

(4.10)

Now if we expand each term on the right using the geometric series we have

t

t− xi

=
1

1− xi

t

= 1 +
xi

t
+

x2
i

t2
+

x3
i

t3
+ · · ·

Adding, we see that the right hand side of 4.10 is

n + (x1 + · · ·+ xn)
1

t
+ (x2

1 + · · ·+ x2
n)

1

t2
+ (x3

1 + · · ·+ x3
n)

1

t3
+ · · ·

or, alternatively (writings0 = n)

t
f ′(t)

f(t)
= s0 +

s1

t
+

s2

t2
+

s3

t3
+ · · · (4.11)
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Multiplying 4.10 byf(t) then gives

tf ′(t) = (tn + p1t
n−1 + · · ·+ pn)(s0 +

s1

t
+

s2

t2
+ · · · ) (4.12)

Multiplying out the right hand side of 4.12 gives a power series

bnt
n + bn−1t

n−1 + · · · b0 + b−1t
−1 + · · ·

where
bn−j = sj + p1sj−1 + · · ·+ pjs0

On the other hand,

tf ′(t) = ntn + (n− 1)p1t
n−1 + · · ·+ pn−1t

This says that the coefficient oftn−j on the left is(n− j)pj which makes sense for all
j > 0 since we setpj = 0 for j > n.

Finally (since we are using formal power series we may equate the coefficients of
tn−j on both sides of 4.12 to get

(n− j)pj = sj + p1sj−1 + · · ·+ pjs0

Subtracting(n − j)pj from both sides of this equation and using the fact thats0 = n
gives Newton’s identity.

We give an application of the use of Newton’s Identities. This is the application that
Newton had in mind and gives a method for finding the largest real root of a polynomial
(assuming such a root exists, is not a multiple root, and is actually the root of largest
modulus). We note that this method is of no practical value today.

The method is based on the fact that if the real rootxn is is of larger modulus
than any other root then for largek, sk = xk

1 + · · · + xk
n ≈ xk

n. Thus the sequence
s1,

√
s2, 3

√
s3, 4

√
s4, . . . should converge toxn.

Example 4.6.2 Let f(x) = x3 − 5x2 + 6x − 1. Thenp1 = −5, p2 = 6 andp3 = −1.
From the identities we get

s1 = −p1 = 5

s2 = −p1s1 − 2p2 = −(−5)(5)− 2(6) = 13

s3 = −p1s2 − p2s1 − 3p3 = −(−5)(13)− (6)(5)− 3(−1) = 38

s4 = −p1s3 − p2s2 − p3s1 = −(−5)(38)− (6)(13)− (−1)(5) = 117

Thus our sequence iss1 = 5,
√

s2 = 3.6055, 3
√

s3 = 3.36197, 4
√

s4 = 3.2888, . . . The
actual root is 3.2469
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Maple Implementation

For actually calculating the ghost coefficients sj with Maple it is
easier to use equation 4.11 directly than Newton’s identities. The
idea is to expand the left hand side of this equation in an asymptotic
series, that is a series in negative powers of t. Thus to find the sj in
the above example one might do

f:= tˆ3 - 5*tˆ2 + 6*t-1;
asympt(t*diff(f,t)/f, t, 5);

and the result would look like

3 +
5

t
+

13

t2
+

38

t3
+

117

t4
+ O(

1

t5
)

where s0, s1, . . . , s4 are the numerators and the O-term at the end is
to remind you that this is an infinite series. Replacing the 5 with a
larger number will get you as many terms as you like.

Exercise 23a[10 points] Use the method just described to find the largest real root of
f(x) = x4 − 2x3 − 5x2 + 6x + 3 correct to 2 significant digits.

4.7 More on Newton’s Identities

In this optional section we consider some more applications of Newton’s identities. The
material in this section will not be needed in the sequel, so you may wish to skip this
section to maintain the continuity of our story.

For our next application we note that if we know thesk we can then calculate the
coefficientspj of our polynomial. For solving Newton’s identities forpj in terms of the
sk we have

p1 = −s1

p2 =
s2
1 − s2

2

p3 =
−2s3 + 2s1s2 + s3

1 − s1s2

6

and so on. Evidently these formulas get very complicated quickly, but numerically it is
easy to solve for thepj ’s directly from Newton’s Identities.
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This technique has been used to calculate the eigenvalues of a matrix. Recall that
the eigenvalues of ann × n matrix A are the roots of the characteristic polynomial
f(λ) = det(λI−A) = λn+p1λ

n−1+p2λ
n−2+· · ·+pn−1λ+pn. (Note that we are using

det(λI−A) rather than the formuladet(A−λI) found in some linear algebra books in
order that our polynomial be monic, these formulas differ by a factor of(−1)n.) If the
eigenvalues (complex and counted according to multiplicities) arex1, x2, . . . , xn then
it is not too difficult to see that the sums1 = x1 + · · · + xn is the sum of the diagonal
entries ofA, in fact both are equal to−p1. The sum of the diagonal entries of a matrix
A is called thetraceof the matrix, trace(A).

It is a bit harder to see that the eigenvalues ofA2 arex2
1, x

2
2, . . . , x

2
n. When there are

no repeated eigenvalues this follows from the fact thatλ is an eigenvalue ofA if there
exists a vectorv 6= 0 so thatAv = λv. ThenA2v = A(Av) = A(λv) = λAv = λ2v so
λ2 is an eigenvalue ofA2. It follows that the trace ofA2 is thenx2

1 +x2
2 + · · ·+x2

n = s2.
More generally the argument above suggests thatsk = xk

1+· · ·+xk
n is the trace ofAk for

eachk > 0. In fact this is true. Thus the method is to calculateAk for k = 1, 2, . . . , n
and setsk to be the trace ofAk. Then working backwards using Newton’s identities we
can find the coefficientsp1, p2, . . . , pn of the characteristic polynomial.

Example 4.7.1 We wish to find the eigenvalues of the matrix

A =

 1 2 0
3 −2 1
2 1 4


We first calculate

A2 =

 7 −2 2
−1 11 2
13 6 17

 , A3 =

 5 20 6
36 −22 19
65 31 74


We then see thats1 = trace(A) = 3, s2 = trace(A2) = 35 ands3 = trace(A3) = 57.
Now from the identity

s1 + p1 = 0

we calculatep1 = −3. From the identity

s2 + p1s1 + 2p2 = 0

we have35 + (−3)(3) + 2p2 = 0 sop2 = −13. Finally from

s3 + p1s2 + p2s1 + 3p3 = 0
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we obtain57 + (−3)(35) + (−13)(3)− 3p3 = 0 sop3 = 29. We thus conclude that the
characteristic polynomial ofA is

f(λ) = λ3 − 3λ2 − 13λ + 29

Using any method from Chapter 2 we see that the roots off(λ) are−3.3813, 1.9244
and 4.4569, i.e. these are the eigenvalues ofA.

Exercise 23b[20 points] Find the characteristic polynomial and the eigenvalues of the
matrix

A =


1 2 0 −1
2 1 −2 0
0 −2 3 3

−1 0 3 1


Hint: The eigenvalues are real.

There are similar identities for finding sums of negative powers of the roots of a
polynomial.

Theorem 4.7.2 Letf(x) = p0t
n+p1t

n−1+· · ·+pn be a polynomial with roots (counted
according to multiplicity)x1, x2, . . . , xn. Assume thatpn 6= 0, i.e. that noxi = 0 and
setpk = 0 for k < 0. Define fork ≥ 0 s−k = x−k

1 +x−k
2 + · · ·+x−k

n = 1
xk
1
+ · · ·+ 1

xk
n
.

Then for allj ≤ n

(n− j)pj + pj+1s−1 + · · ·+ pnsj−n = 0

The proof is similar to that of Theorem 4.6.1 by noting that expansion as a formal
power series in positive powers oft gives

−t
f ′(t)

f(t)
= s−1t + s−2t

2 + s−3t
3 + · · · (4.13)

Maple Implementation

Again the most efficient way to calculate the ghost coefficients
s−j is to expand the left hand side of equation 4.13 as a series, eg.

series(-t*diff(f,t)/f,t,8);

would give s−j as the coefficient of tj for j = 1, 2, . . . , 7.



4.7. MORE ON NEWTON’S IDENTITIES 129

Often in the literature the Newton’s identity for positive and negative powers is
combined by adding the two identities as follows:

Corollary 4.7.3 With hypotheses as in the previous theorem, settings0 = n we have
for all integers (positive, negative and zero)j

p0sj + p1sj−1 + p2sj−2 + · · ·+ pnsj−n = 0

Actually, the Newton’s Identity for negative powers looks nicer if we use our more
standard notation for polynomials:

Corollary 4.7.4 Let f(x) = a0 + a1t + a2t
2 + · · · + ant

n be a polynomial of degree
n with a0 6= 0. Let x1, . . . , xn be the roots counted according to multiplicity and let
s−k = x−k

1 + · · ·+ x−k
n for all k > 0. Then for allj > 0

jaj + aj−1s−1 + aj−2s−2 + · · ·+ a0s−j = 0

It should be noted from this result that alghough the number of roots and the actual
roots depends on the degree and all the coeficients, thesumof the jth powers of the
reciprocals of the roots depends only on the coefficientsa0, a1, . . . , aj whenj < n and
is independent of the degree. This observation motivated the mathematician Euler to
apply this last corollary to power series. Most modern mathematicians will say that
Euler’s argument is wrong, but his results are correct.

Euler wanted to calculate the number

ζ(n) =
∞∑

k=1

1

kn

for n a positive even integer. To this end he started with the series

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

and noted thatsin(x) has rootskπ for all integersk. Dividing by x eliminates the root
at 0 and replacingx by

√
x eliminates the negative roots according to Euler. Thus Euler

argued that

f(x) =
sin(

√
x)√

x
= 1− x

3!
+

x2

5!
− x3

7!
+ · · ·
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has roots at(kπ)2 for k = 1, 2, 3, . . .. This is certainly correct, however (here is the
questionable step!) Euler then set

s−j =
∞∑

k=1

1

((kπ)2)j
=

1

π2j

∞∑
k=1

1

k2j
(4.14)

and calculated thes−j using the Newton’s Identities of the last corollary. Forj = 1 he
had1a1 + a0s−1 = 0 so s−1 = −a1 = 1

3!
= 1/6. Multiplying equation (4.14) byπ2

gives

ζ(2) =
∞∑

k=1

1

k2
= π2s−1 =

π2

6

Next using2a2 + a1s−1 + a0s−2 = 0 givess−2 = ( 1
3!
)2 − 2

5!
= 1

90
. Multiplying (4.14)

by π4 gives

ζ(4) =
∞∑

k=1

1

k4
= π4s−2 =

π4

90

It should be mentioned that there is still no simple formula for odd values ofζ, for
exampleζ(3) =

∑∞
k=1

1
k3 is known only numerically and only in the last few years has

even been shown to be irrational.
Exercise 23c[10 points] Assuming that Euler’s calculation is correct, findζ(6) and
ζ(8).

4.8 Symmetric Polynomials

The expressionssk = xk
1 +· · ·+xk

n are examples ofsymmetric polynomials. Symmetric
polynomials played a large role in the development of the modern theory of solvability
of polynomials. The 18th century mathmatician Edward Waring is often credited for
much of the development of the theory of symmetric polynomials.

More generally we start with a polynomialf(x1, x2, . . . , xn) in n variablesxj. This
means thatf(x1, x2, . . . , xn) is a sum of terms each one is a constant times positive
powers of some or all of the variablesxj. f(x1, x2, . . . , xn) is symmetricif any permu-
tation of the variables leaves the result unchanged. More precisely,f(x1, x2, . . . , xn) is
symmetric if for all1 ≤ j < k ≤ n f(. . . , xj, . . . , xk, . . .) = f(. . . , xk, . . . , xj, . . .).
For example

f(x1, x2, x3) = x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3

is a symmetric polynomial but

g(x1, x2, x3) = x1x
2
2x

3
3



4.8. SYMMETRIC POLYNOMIALS 131

is not forg(x2, x1, x3) = x2
1x2x

3
3 6= g(x1, x2, x3).

Consider a polynomialf(t) = t3 + p1t
2 + p2t + p3 of degree three with roots

x1, x2, x3. Thenf(t) factors asf(t) = (t − x1)(t − x2)(t − x3). Multiplying this last
expression back out we getf(t) = t3−(x1+x2+x3)t

2+(x1x2+x1x3+x2x3)t−x1x2x3.
Thus we conclude that

p1 = −(x1 + x2 + x3)

p2 = x1x2 + x1x3 + x2x3

p3 = −x1x2x3

We note that the coefficientsp1, p2, p3 are symmetric functions of the rootsx1, x2, x3

which should not be suprising since the order in which we listed the roots was clearly
irrelevant.

This pattern holds also for polynomials of higher degree and was well known to
mathematicians of the17th and18th century.

Theorem 4.8.1 Let f(t) = tn + p1t
n−1 + · · · + pn−1t + pn be a monic polynomial of

degreen with rootsx1, x2, . . . , xn. Then

p1 = −(x1 + x2 + · · ·+ xn) = −
n∑

j=1

xj

p2 = x1x2 + · · ·+ xn−1xn =
∑

1≤j<k≤n

xjxk

p3 = −(x1x2x3 + · · ·+ xn−2xn−1xn) = −
∑

1≤j<k<`≤n

xjxkx`

...

pn = (−1)nx1x2 · · ·xn

Example 4.8.2 Find a polynomial with roots 1,2,3,4. By the Theorem

p1 = −(1 + 2 + 3 + 4) = −10

p2 = 1 ∗ 2 + 1 ∗ 3 + 1 ∗ 4 + 2 ∗ 3 + 2 ∗ 4 + 3 ∗ 4 = 35

p3 = −(1 ∗ 2 ∗ 3 + 1 ∗ 2 ∗ 4 + 1 ∗ 3 ∗ 4 + 2 ∗ 3 ∗ 4) = −50

p4 = 1 ∗ 2 ∗ 3 ∗ 4 = 24

sof(t) = t4 − 10t3 + 35t2 − 50t + 24.
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Example 4.8.3 Suppose we know for some reason (eg. we started Graeffe’s method)
that f(x) = x3 − x2 − x − 15 has an imaginary root of modulus

√
5. We wish to

find the roots. Call this rootx1 = a + bi. Thenx2 = a − bi is also a root so|x1|2 =
x1x2 = 5. Now p3 = −15 = −x1x2x3 = −5x3 so we see easily thatx3 = 3. But
p1 = −x1−x2−x3 = −2a−3 = −1 so−2a = 2 ora = −1. Since|x1|2 = 5 = a2+b2

it follows thatb2 = 4 sob = ±2. Thus the roots are−1 + 2i,−1− 2i and3.

Since Theorem 4.8.1 gives the close relation between the roots and the coefficients
one might hope that these formulas might give a way to find the roots given the coeffi-
cients. Unfortunately this will not work, but to some extent these formulas are the basis
for all attempts after the days of Cardano.

In Theorem 4.8.1 we can viewp1, p2, . . . as symmetric polynomials in the variables
x1, . . . , xn. These symmetric polynomials are often known in the literature as theele-
mentary symmetric polynomials. Thus we can view Theorem 4.6.1 as saying that the
symmetric functionssk = xk

1 + · · ·+ xk
n are polynomials in the elementary symmetric

polynomials, eg. as Girard noteds3 = −p3
1+3p1p2−3p3. What is much more suprising

is the following:

Theorem 4.8.4 (Fundamental Theorem on Symmetric Polynomials)Let
f(x1, x2, . . . , xn) be a symmetric polynomial inn variables with coefficients in an in-
tegral domainR. Thenf(x1, x2, . . . , xn) can be expressed as a polynomial in then
elementary symmetric functionsp1, p2, . . . , pn with coefficients inR.

The coefficient ringR will generally beZ or Q. Proofs of this theorem are con-
tained in the books byUspenskiandLang, in additionAdams and Loustanausketch a
modern proof as an exercise and details of this proof can be found inFine and Rosen-
berger. We will simply illustrate by some examples.

Example 4.8.5 In the two variable case the elementary symmetric functions arep1 =
−x1 − x2 and p2 = x1x2. Consider the symmetric polynomialD = (x1 − x2)

2.
Expanding,D = x2

1 − 2x1x2 + x2
2 = s2 − 2p2 wheres2 = x2

1 + x2
2 as in§4.6. By

Newton’s Identitiess2 = p2
1 − 2p2 soD = p2

1 − 2p2 − 2p2 = p2
1 − 4p2 Note that this is

just the discriminant of the quadratic polynomialf(t) = t2 + p1t + p2.

Example 4.8.6 For a real cubic polynomialf(t) = t3+p1t
2+p2t+p3 the discriminant

is D = (x1 − x2)
2(x1 − x3)

2(x2 − x3)
2 wherex1, x2, . . . , x3 are the roots. It is a bit

much work to put down here but it has been shown that

D = 18p1p2p3 − 4p3
1p3 + p2

1p
2
2 − 4p3

2 − 27p2
3

If p1 = 0 as in§4 then we simply haveD = −4p3
2 − 27p2

3 as in Theorem 4.4.1.
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More generally given a polynomialf(t) = tn + p1t
n−1 + · · ·+ pn of degreen with

rootsx1, . . . , xn thediscriminantis defined by

D = (x1 − x2)
2(x1 − x3)

2 · · · (xn−1 − xn)2

i.e. the product of all differences(xj − xk)
2 for j < k. The general formula, which

requires some advanced techniques to justify, is

D = det


s0 s1 · · · sn−1

s1 s2 · · · sn

s2 s3 · · · sn+1
...

...
...

...
sn−1 sn · · · s2n−2


where as in§6 sk = xk

1 + · · · + xk
n. Newton’s Identities then can be used to expressD

in terms of thepj ’s. Note in particular that if the coefficientspj are real thenD is real,
if the pj are all integers thenD is an integer. The generalization of Theorem 4.4.1 is

Theorem 4.8.7 Let D be the discriminant off(t) as above, where the coefficientspj

are real. Thenf(t) has multiple roots if and only ifD = 0. Otherwise ifD > 0 then
f(t) has an even number ofpairs of imaginary roots, ifD < 0 thenf(t) has an odd
number ofpairs of imaginary roots.

It should go without saying that except forn = 2, 3 calculating the discriminant is
a terrible way to tell iff(t) has multiple roots or to count real roots.

We will need a few more calculations for the next section:

Example 4.8.8 Let f(t) = t4 +p1t
3 +p2t

2 +p3t+p4 be a biquadratic polynomial with
rootsx1, x2, x3, x4. Consider

A = x1 + x2 − x3 − x4

B = x1 − x2 + x3 − x4

C = x1 − x2 − x3 + x4

Let a = A2, b = B2 andc = C2. Thena + b + c, ab + ac + bc andABC are all seen
to be symmetric polynomials inx1, . . . , x4. We can calculate

a + b + c = 3p2
1 − 8p2 (4.15)

ab + ac + bc = 3p4
1 − 16p2

1p2 + 16p1p3 + 16p2
2 − 64p4 (4.16)

ABC = p3
1 − 4p1p2 + 8p3 (4.17)
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We leave the first two calculations as rather hard exercises for the reader (seeUspensky
for example) and tackle only the third. We note that multiplying out we can have 3
types of terms,x3

j , x
2
jxk andxjxkx` where in each termj, k, ` are different. Note that

x1 occurs only with “+” signs, but each ofx2, x3, x4 occur exactly twice with− signs
in the expressionsA, B, C. Thus the expansion ofABC will contain the termsx3

j for
eachj so it will contains3 = x3

1 + x3
2 + x3

3 + x3
4.

To get a term of the formx2
jxk we must pick two ofA, B, C to pick out thej

and thek comes from the third. There are 3 ways to do this. It can be seen that two
of the ways give a “−” sign but the third gives a “+” so each of the 12 termsx2

jxk

occurs with a coefficient of−1 in the expansion. Now note, for example whenj = 1,
x2

1x2 + x2
1x3 + x2

1x4 = x2
1x1 + x2

1x2 + x2
1x3 + x2

1x4 − x3
1 = x2

1(−p1) − x3
1. Repeating

this for j = 2, 3, 4, adding and multiplying by the−1, we see that the contribution of
thex2

jxk in ABC is (x2
1 + x2

2 + x2
3 + x2

4)p1 + (x3
1 + x3

2 + x3
3 + x3

4) = s2p1 + s3.
Finally we have terms of the formxjxkx` where we can takej < k < `. Note that

each such term can be generated 6 ways, i.e. we can choose thej from either factor
A, B or C, then we have only two factors from which to choose thek and we must
choose thè from the remaining factor. By careful inspection, we see that 4 ways give
“+” signs and 2 ways give “−” signs, thus the contribution of thexjxkx` terms in the
productABC is 2x1x2x3 + 2x1x2x4 + 2x1x3x4 + 2x2x3x4 = −2p3.

Thus we can conclude thatABC = s3 + (s2p1 + s3)− 2p3 = 2s3 + s2p1 − 2p3 =
2(−p3

1 + 3p1p2 − 3p3) + (p2
1 − 2p2)p1 − 2p3 = −p3

1 + 4p1p2 − 8p3 as claimed.

Exercise 23d[10 points] Write the symmetric polynomialf(x1, x2, x3) = x3
1x2x3 +

x1x
3
2x3 + x1x2x

3
3 in three variables in terms of the elementary symmetric functions

p1, p2, p3 of three variables.

4.9 Lagrange’s Solution of the Biquadratic

After Cardano’s publication of del Ferro, Tartaglia and Ferrari’s solution of the cubic
and biquadratic, many mathematicians tried to find similar methods for solving the
quintic (5th degree) and higher degree equations. They failed, as we now know they
must, and so, for the most part, history has not recorded their efforts. Several of the
attempts were more noteworthy than the others, for example Vandermonde’s almost
correct solution (in 1770) of the cyclotomic equationxn − 1 in radicals of degree less
than n (Gauss filled in the details in 1801). However the most significant attempt was
made by Lagrange. In order to attack higher degree polynomials he started with a de-
tailed analysis of the solution of the cubic and biquadratic. The information he gained
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was, of course, not enough to help him solve the quintic, but it laid the foundation for
the proofs by Ruffini, Abel and Galois that the quintic and higher degree polynomials
could not, in general, be solved by radicals. A good discussion of the history of these
ideas can be found inB.L van der Waerden’s“A History of Algebra”. Lagrange devised
solution methods for the cubic and the biquadratic, these are given in Chapter XI ofUs-
pensky. We give his solution of the biquadratic since, unlike the cubic where Lagrange
re-derives Cardano’s equations (see Exercise 23e), the solution is given in a different,
and more elegant, form than that of Ferrari.

We start with a polynomialf(t) = t4 + pt3 + qt2 + rt + s where for notational
simplicity we are using the lettersp, q, r, s instead ofp1, p2, p3, p4 respectively. Let
x1, x2, x3, x4 be the roots off(t). As in example 4.8.8 we let

A = x1 + x2 − x3 − x4

B = x1 − x2 + x3 − x4 (4.18)

C = x1 − x2 − x3 + x4

anda = A2, b = B2 andc = C2. We then have

a + b + c = 3p2 − 8q = u (4.19)

ab + ac + bc = 3p4 − 16p2q + 16pr + 16q2 − 64s = v (4.20)

abc = (p3 − 4pq + 8r)2 = w (4.21)

From Theorem 4.8.1 it follows thata, b, c are the roots of theresolvent cubic

g(t) = t3 + ut2 + vt + w

The cubic equationg(t) = 0 can be solved by Cardano’s method (or Lagrange’s method
in Exercise 23e) soa, b, c can be calculated. ThenA, B, C can be found by taking
square roots ofa, b, c, being careful only to select signs so that

ABC = −p3 + 4pq − 8r

as required by Example 4.8.8. We then have equations (4.18) together with the equation

−p = x1 + x2 + x3 + x4

Thus we have a system of 4 linear equations in the 4 unknownsx1, x2, x3, x4 which can
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be solved once and for all by

x1 =
−p + A + B + C

4

x2 =
−p + A−B − C

4

x3 =
−p− A + B − C

4

x4 =
−p− A−B + C

4

While this method is very elegant in theory, we warn the reader that in practice we
may haveu 6= 0 in the resolvant cubic, and in any case the resolvant cubic may have a
messy solution, the square roots of which must then be calculated!

We end this section with an analysis of Lagrange’s method. It is based on the
following theorem, which is a special case of a theorem proved by Lagrange. This
theorem deals with what we might callsomewhat symmetric polynomialsin that some
permutations, but perhaps not all, may leave the value unchanged.

Theorem 4.9.1 Letg(x1, x2, . . . , xn) be a polynomial inn variables. Suppose that un-
der all permutations of the variables the polynomial takes on exactlym different values,
g1 = g, g2, . . . , gm then there is a polynomialf(t) of degreem whose coefficients are
polynomials in the elementary symmetric functions ofx1, . . . , xn so that the roots of
f(t) areg1, g2, . . . , gm.

The idea of the proof is to construct the elementary symmetric functionsP1, . . . , Pm

of the gj, i.e. P1 = g1 + g2 + · · · + gm, Pm = g1g2 · · · gm etc. It can be seen that
thePj are actual symmetric functions and hence by Theorem 4.8.4 expressible in the
elementary symmetric functions onx1, . . . , xn. But by Theorem 4.8.1g1, . . . , gm are
roots off(t) = tm + P1t

m−1 + · · ·+ Pm.
In Lagrange’s solution of the biquadratic we took forg(x1, . . . , xn) the somewhat

symmetric functiona = (x1 + x2 − x3 − x4)
2. It should be noted that permuting the

variables gives exactly three different values, mainlya, b andc. Thusa, b, c are roots of
a polynomial whose coefficients are polynomials inp, q, r ands, mainly the resolvent
polynomial.

In connection with Theorem 4.9.1, Lagrange noted that if one multiplied the number
of different values taken byg(x1, . . . , xn) by the number of permutations which left
g(x1, . . . , xn) unchanged, the product will always ben!, the number of all permutations
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of then variables. For example, in the paragraph above,a takes on 3 distinct values
under permutations, but there are 6 ways to permute the variables so thata remains
unchanged.4 ∗ 6 = 24 = 4!. At the time Lagrange lived, group theory had not yet
been invented. When group theory was invented 100 years later the mathematician
Camile Jordan named a now famous theorem of group theory after Lagrange because
Lagrange’s observation was simply a special case of this general theorem.

Exercise 23e[30 points] Derive Lagrange’s solution of the cubic. Letf(t) = t3 +pt2 +
qt + r have rootsx1, x2, x3 and setA = x1 + ωx2 + ω2x3 andB = x1 + ω2x2 + ωx3

whereω = −1+
√

3i
2

is a cube root of 1. Show thata = A3 takes on only 2 values under
permutations of the roots, mainlya andb = B3 and thus these two values are roots of
the resolvent quadratic. Find the coefficients of the resolvent quadratic in terms ofp, q
andr. Note also thatAB is a symmetric function of the roots so calculateAB in terms
of p, q, r. Then solving the resolvent quadratic, taking appropriate cube roots ofa, b to
get the correctAB, the formulas forA, B and−p = x1 + x2 + x3 give three linear
equations in 3 unknowns which can be solved to obtain Cardano’s Equations.

4.10 Insolvability of the Quintic

Lagrange had hoped that his study of solution methods of the cubic and biquadratic
would lead to a solution of the quintic (5th degree polynomial equation). After all, by
his Theorem, all one needed to find was a suitable somewhat symmetric function of 5
variables that took on exactly 4 different values under permutation of the variables. If
this function was a power of a linear function of the variables, then with the additional
equation−p1 = x1 + · · ·+ x5 he could then solve the “resolvent biquadratic” and take
roots to obtain 5 equations in 5 unknowns which could be solved for the roots of the
original polynomial. Unfortunately, such a function does not exist.

While Lagrange was optimistic that the solution method would be found, the Ital-
ian mathematian Paulo Ruffini realized that Lagrange’s analysis could lead instead to
a proof that no solution could exist. Ruffini claimed that he had such a proof in 1798
but many mathematicians were skeptical. What Ruffini actually proved was that La-
grange’s method would not lead to a solution, but there was a gap in his argument that
if Lagrange’s method did not work, no method would work. In 1824 the 22 year old
Niels Henrik Abel filled the gap in Ruffini’s proof.

It is important to understand exactly what Ruffini and Abel proved. They started
with variables x1, x2, . . . , x5 and definedp1, p2, . . . , p5 as in 4.8.1. The polynomial
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f(t) = t5 + p1t
4 + · · · + p5 is called the general quintic. The goal was to solve this

in terms ofp1, . . . , p5 using only the algebraic operations of addition, subtraction, mul-
tiplication, division and the taking of roots (square roots, cube roots, etc.). In other
words, the goal is to recover the variablesx1, . . . , x5 from the polynomialsp1, . . . , p5

using only algebraic operations. Of course if this were possible then by replacing the
pj by the coefficients of an actual polynomial and then doing these algebraic operations
then the numbersx1, . . . , x5 obtained would be the actual roots.

For example, in the case of the quadratic, thegeneral quadraticis f(t) = t2 +pt+q

wherep = −(x1 + x2) andq = x1x2. Thegeneral quadratic formulax =
−p±

√
p2−4q

2

then recoversx1, x2 from p, q as follows:

−p±
√

p2 − 4q

2
=

x1 + x2 ±
√

(x1 + x2)2 − 4x1x2

2

=
x1 + x2 ±

√
x2

1 − 2x1x2 + x2
2

2

=
x1 + x2 ±

√
(x1 − x2)2

2

=
x1 + x2 ± (x1 − x2)

2
= x1 or x2

A solution of this type is called asolution by radicalsfor the general equation.
What Ruffini and Abel proved is that a solution by radicals did not exist for the general
quintic. In particular, there is no single solution method which works for all quintic
equations.

Several questions still remain. First, perhaps while no one single solution method
works for all quintics, maybe there are several methods one of which would work for
any given quintic. For instance, Cardano thought, wrongly as we now know, that 13
different methods were necessary to solve all cubics. Perhaps we need 13 methods to
solve all quintics? There certainly are some types of quintics which can be solved, for
example the cyclotomic equationx5 − 1 = 0 was solved by radicals by Vandermonde.
Perhaps different methods would solve other types of quintics. The first question then
is whether this is actually true.

Even if it was not possible to have a finite list of solution methods covering all
quintics, one would surely expect that for any given quintic with rational coefficients
the roots would be algebraic expressions involving rational numbers, sums, differences,
products, quotients and roots of various orders. So the second question is: “is this true?”
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In 1831 Evariste Galois showed that in fact the answer to both questions is no! For
example, not only is there no algebraic method to find the roots ofx5 − 6x + 3 = 0 but
the roots cannot be expressed in terms of radicals. Galois went much further than this,
by showing that this negative result applies also to polynomials of degree higher than 5.
More importantly, he gave a method for determining whether or not a given polynomial
could be solved by radicals (at least in principle, if not in practice). Galois’ method,
like the method of Ruffini and Abel following Lagrange, involves permuting the roots
of the polynomial. But unlike Lagrange, Galois does not allow all permutations of the
roots, only agroupof permutations which somehow preserve the algebra of numbers
which can be built up from the roots (the set of such numbers is called theroot fieldof
the polynomial). Thus Galois replaces the polynomial by its root field and then replaces
the root field by the abstract algebraic object now known as theGalois groupand shows
that solvability of the polynomial is equivalent to some facts about the structure of the
group.

Galois’ proof method, now known asGalois Theoryremains this day as one of
the most elegant theories in mathematics. As there are many good accounts in the
mathematical literature we will not pursue this any further here. For the reader who
wants a reasonably elementary introduction we recommend the account inBirkhoff and
Mac Laneor the one inFine and Rosenberger.

The technique of replacing one mathematical object (eg. polynomials) by others
easier to analyze (eg. fields, groups) has become central in modern mathematics. In
addition there are many important direct applications of Galois theory. In a modern
research journal such as theBulletin of the American Mathematical Societythe name
“Galois” appears as often as the name of any other single mathematician. Yet Galois’
work did not bring him any fame, or even recognition, in his lifetime. Galois sent two
papers to Cauchy, who lost them. He sent one paper to Fourier who promptly died, and
this paper is also lost. His most important paper (1831) was given to the mathematicians
Poisson and Lacroix to review, but they couldn’t understand it. A year later Galois was
shot in a duel, not yet 21 and not yet known. Finally in 1846 the paper was published
by Liouville in his journal. However the importance of Galois’ work did not become
apparent to the mathematical public until 1870 when Jordan published his full account
of Galois theory.


