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4.6 Newton’s Identities

While it was noticed early that the roots of a polynomial are not rational expressions of
the coefficients, the mathematician Girard noticed in 1629 that certain expressions in
the roots were rational expressions of the coefficients.

Suppose we consider the polynomial equation

34+ p1t> + pot +p3 =0

Let zq, 2o, x3 be the roots. Then Girard noted that

T+ 2o +2x3 = —pP1
x%—i—x%—i—x% = pf—2p2
:z:zl)’ + x% + :z:§ = —pi’ + 3p1p2 — 3p3

T+ ay+ay = pi—4pips + 4pips + 2p)

While it seems clear that we can continue, it was not clear to Girard what the general
pattern was. In fact, the general pattern is quite complicated but Isaac Newton published
in 1683 a simple set of recursive equations. Note that for convenience we are writing
the coefficients of the polynomial in a non-standard order.

Theorem 4.6.1 (Newton’s Identities)Let
f@) ="+ pit" ™ 4 pot" " - puat 4y

be a polynomial with roots (counted according to multiplicity) z,, . . ., z,. For j =
1,2,3,... let o
sj=x+xh 4+ +al

Setp, = 0 for k > n. Then forallj > 0
$j+p18j—1+pesj_o+ -+ pj1s1+jp; =0
What this theorem says is that we have the equations

51+ m

So + p1S1 + 2po

$3 + p1S2 + pas1 + 3ps

S4+ 1S3+ pasa + p3s1 +4ps =

\
o o o o
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The first equation allows us to solve fer in terms ofp;. Then since we knowg;

and thep, the second equation allows us to solve for Now we knowsy, s, and
the p, so we can solve the third equation fey. We can continue in this manner to
find s4, s5 and so on for as long as we like. The reader should check that solving the
four equations gives Girard’s formulas above. Newton did not bother to supply a proof
for these identities. We will sketch a proof modified frasspensky We will work

with formal power seriesi.e. expressions of the forin ;- a;z* . By formalwe mean

that we won’t worry about convergence, we will only do algebraic operations. The
operations of sum and product for formal power series are as defined for polynomials
in Chapter 1 and we obtain an integral domain. The main surprise is that formal power
series with non-zero constant term have multiplicative inverses. In particular we have

thegeometric series
1

11—z
Proof: We start with the factorization

=l4+z+a*>+2° -

fO)=t"+pt" b py =t —x)(t =) (t — )
We then take théogarithmic derivative

O 1 1
O t—m i—m i

Multiplying by ¢ gives

"(t t t t
ft) t—x1 t—x t—x,

(4.10)

Now if we expand each term on the right using the geometric series we have

S TSN L
t—mx  1—% t 2 3

t

Adding, we see that the right hand side of 4.10 is

1 1 1
n—l—(xl+---—|—xn)¥—l—(:€%—|—---+xi)t—2+(x?+~--+xfl)t—3—|—--~
or, alternatively (writingsy = n)
"(t s s s
tf—():50+—1+ 2 24 (4.11)

[10) t 2
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Multiplying 4.10 by f(¢) then gives
EF(8) = (" 4Pt e pa)(so+ o+ ) (4.12)
Multiplying out the right hand side of 4.12 gives a power series

bpt™ + by t" b bt

where
bn—j = 5; —|—p18j_1 + - +pj80
On the other hand,

tf'(t) =nt" 4+ (n — Dpit™ ' 4 - + pu_it

This says that the coefficient 6f 7 on the left is(n — j)p,; which makes sense for all
j > 0since we sep; = 0 for j > n.

Finally (since we are using formal power series we may equate the coefficients of
t"~7 on both sides of 4.12 to get

(n—J)pj = 8j +p18j—1+ -+ +p;so

Subtracting(n — j)p,; from both sides of this equation and using the fact that n
gives Newton’s identity.

We give an application of the use of Newton'’s Identities. This is the application that
Newton had in mind and gives a method for finding the largest real root of a polynomial
(assuming such a root exists, is not a multiple root, and is actually the root of largest
modulus). We note that this method is of no practical value today.

The method is based on the fact that if the real roptis is of larger modulus
than any other root then for large s, = % + --- + 2F ~ z%. Thus the sequence

S1,+/S2, </S3, V/s4, . .. sShould converge to,,.

Example 4.6.2Let f(x) = 2* — 52? + 62 — 1. Thenp, = —5, p, = 6 andp; = —1.
From the identities we get

$1 = —p1=29

Sg = —p1s1 — 2p2 = —(—5)(5) — 2(6) = 13

S3 = —p1Sg — pasy — 3ps = —(—=5)(13) — (6)(5) — 3(—1) = 38

84 = —P1S3 — P2S2 — P3S1 = _(_5)(38) - (6)(13) - (_1)(5) =117

Thus our sequence is = 5, /sy = 3.6055, {/s3 = 3.36197, /s, = 3.2888,... The
actual root is 3.2469
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Maple Implementation

For actually calculating the ghost coefficients s; with Maple it is
easier to use equation 4.11 directly than Newton’s identities. The
idea is to expand the left hand side of this equation in an asymptotic
series, that is a series in negative powers of ¢. Thus to find the s; in
the above example one might do

fi= "3 - 5*"2 + 6*t-1;
asympt(txdiff(f,t)/f, t, 5);

and the result would look like

5 13+§+£7 1
t 2t t

where sy, s1, ..., s, are the numerators and the O-term at the end is
to remind you that this is an infinite series. Replacing the 5 with a
larger number will get you as many terms as you like.

Exercise 238[10 points] Use the method just described to find the largest real root of
f(x) = 2t — 22% — 52% + 62 + 3 correct to 2 significant digits.

4.7 More on Newton’s ldentities

In this optional section we consider some more applications of Newton’s identities. The
material in this section will not be needed in the sequel, so you may wish to skip this
section to maintain the continuity of our story.

For our next application we note that if we know thewe can then calculate the
coefficientsp; of our polynomial. For solving Newton’s identities fpy in terms of the
s; we have

bhr = —5

s? — 89
P2 = 5

—253 —+ 28152 + Szl)’ — 8182
p3 =

6

and so on. Evidently these formulas get very complicated quickly, but numerically it is
easy to solve for thg,’s directly from Newton’s Identities.
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This technique has been used to calculate the eigenvalues of a matrix. Recall that
the eigenvalues of an x n matrix A are the roots of the characteristic polynomial
FO) =det(A[—A) = N +p A" L4 pp A" 24+ - - 4-p, 1 A+p,.. (Note that we are using
det(AI — A) rather than the formuldet(A — A7) found in some linear algebra books in
order that our polynomial be monic, these formulas differ by a factgr-af)".) If the
eigenvalues (complex and counted according to multiplicities)are,, . .., z, then
it is not too difficult to see that the sum = z; + - - - + z,, is the sum of the diagonal
entries ofA, in fact both are equal te-p;. The sum of the diagonal entries of a matrix
A is called thetrace of the matrix, tracgA).

It is a bit harder to see that the eigenvaluesiéfirez? 22, ..., z2. When there are
no repeated eigenvalues this follows from the fact thest an eigenvalue ofl if there
exists a vector # 0 so thatdv = \v. ThenA?v = A(Av) = A(\w) = MAv = N0 s0
A% is an eigenvalue afi?. It follows that the trace ofi? is thenz? + 23+ - - - + 22 = s,.
More generally the argument above suggestsshat 25 +- - -+2* is the trace ofd* for
eachk > 0. In fact this is true. Thus the method is to calculdfefor £ = 1,2,....n
and sets;, to be the trace ofi*. Then working backwards using Newton’s identities we
can find the coefficientg,, p, . . ., p,, of the characteristic polynomial.

Example 4.7.1 We wish to find the eigenvalues of the matrix

1 2 0
A=13 =2 1
2 1 4
We first calculate
7T =2 2 5 20 6
A= -1 11 2|, A®=|36 —22 19
13 6 17 65 31 74

We then see that; = tracd A) = 3, s, = tracg A?) = 35 andsz = tracg A3) = 57.
Now from the identity
s1+p1=0

we calculatey, = —3. From the identity
So+p1s1+2p, =0
we have3s + (—3)(3) + 2p, = 0 sop, = —13. Finally from

S3 + p1S2 + p2sy + 3p3 =0
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we obtain57 + (—3)(35) + (—13)(3) — 3p3 = 0 sopz = 29. We thus conclude that the
characteristic polynomial ofl is

FA) =A% —3X% — 13X +29

Using any method from Chapter 2 we see that the root§ af are —3.3813, 1.9244
and 4.4569, i.e. these are the eigenvalues.of

Exercise 23b[20 points] Find the characteristic polynomial and the eigenvalues of the
matrix

A:

=
|

= R

W w oo

=

Hint: The eigenvalues are real.

There are similar identities for finding sums of negative powers of the roots of a
polynomial.

Theorem 4.7.2 Let f(z) = pot"+p1t" ' +- - -+p, be a polynomial with roots (counted
according to multiplicity)z, zs, . . ., z,. Assume thap, # 0, i.e. that noz; = 0 and
setp, = 0fork < 0. Definefork >0 s_, = a7 +a3* +- - +af = S+ 4+ .
Thenforallj <n ' "

(n—J)pj +pjz15-1++ + PpSjn =0

The proof is similar to that of Theorem 4.6.1 by noting that expansion as a formal
power series in positive powers bfives

f'(t)

=5 4t + S ot + s 53+ - 4.13
f(lf) 81+$2 +83+ ( )

—t

Maple Implementation|

Again the most efficient way to calculate the ghost coefficients
s_; is to expand the left hand side of equation 4.13 as a series, eg.

series(-t*diff(f,t)/f,t,8);

would give s_; as the coefficient of #/ for j = 1,2,...,7.
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Often in the literature the Newton’s identity for positive and negative powers is
combined by adding the two identities as follows:

Corollary 4.7.3 With hypotheses as in the previous theorem, setiing n we have
for all integers (positive, negative and zerp)

PoSj + P1Sj—1 + Pp2sj—2+ -+ puSj—n =0

Actually, the Newton’s Identity for negative powers looks nicer if we use our more
standard notation for polynomials:

Corollary 4.7.4 Let f(x) = ag + a1t + ast® + - -+ + a,t™ be a polynomial of degree
n with ay # 0. Letzq,...,x, be the roots counted according to multiplicity and let
s_p=a;" 4+ +aFforall k> 0. Thenforallj >0

jaj +a;_ 151+ a;_285 9+ -+ apsS_; = 0

It should be noted from this result that alghough the number of roots and the actual
roots depends on the degree and all the coeficientssuthmof the j/* powers of the
reciprocals of the roots depends only on the coefficiepts;, . .., a; whenj < n and
is independent of the degree. This observation motivated the mathematician Euler to
apply this last corollary to power series. Most modern mathematicians will say that
Euler's argument is wrong, but his results are correct.

Euler wanted to calculate the number

e}

=30

k=1
for n a positive even integer. To this end he started with the series

T 1

sin(x):x—§+a_ﬁ+...

and noted thatin(z) has rootgir for all integersk. Dividing by x eliminates the root
at 0 and replacing by /z eliminates the negative roots according to Euler. Thus Euler

argued that
sin(y/x A
_sin(yz) A T

f@)=—7 31 5T
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has roots atkr)? for k = 1,2,3,.... This is certainly correct, however (here is the
guestionable step!) Euler then set
1 I 1
S L Ty (419
k=1 k=1

and calculated the_; using the Newton’s Identities of the last corollary. Foe 1 he
hadla; + aps_1 = 0s0s_; = —a; = 5, = 1/6. Multiplying equation (4.14) byr”
gives

=1 9 2
¢(2) = PR Ty
k=1
Next using2a, + a;s_; + ags_» = 0 givess_, = (3;)? — 2 = 55. Multiplying (4.14)

by 7 gives
4

1 T
¢(4) :ZF =nls_y = 90
pt

It should be mentioned that there is still no simple formula for odd valu€s foir
example((3) = > o, % is known only numerically and only in the last few years has
even been shown to be irrational.

Exercise 23c[10 points] Assuming that Euler’s calculation is correct, fifié) and

¢(8).

4.8 Symmetric Polynomials

The expressions, = %+ - -+2z* are examples afymmetric polynomialsSymmetric
polynomials played a large role in the development of the modern theory of solvability
of polynomials. The 18th century mathmatician Edward Waring is often credited for
much of the development of the theory of symmetric polynomials.

More generally we start with a polynomif{x,, zs, . . ., ,) in n variablesz;. This
means thaff (z1, z, ..., x,) IS @ sum of terms each one is a constant times positive
powers of some or all of the variables. f(x1, zs, ..., z,) is symmetridf any permu-
tation of the variables leaves the result unchanged. More precfiely,xs, ..., x,) is
symmetricifforalll < j <k <n f(...,zj...,¢%...) = f(...,Tpy ..., T4, ...).

For example
f(z1, 19, 13) = 232925 + 117573 + T1 2973

is a symmetric polynomial but

g(x1, 29, 23) = 112523
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is not forg(xy, z1, x3) = B3935 # g(21, T2, T3).

Consider a polynomiaf(t) = 3 + pit* + pot + p* of degree three with roots
x1, %9, x3. Thenf(t) factors asf(t) = (t — x1)(t — x2)(t — x3). Multiplying this last
expression back out we gétt) = t3— (1 +zo+x3)t* + (1120 + 1123+ X013 )t — 11 To 3.
Thus we conclude that

pm = —(x1+ 29+ x3)
P2 = T1X2 + T1T3 + Tox3
P3 = —T1X2X3

We note that the coefficienis, p», p3 are symmetric functions of the roats, x», 3
which should not be suprising since the order in which we listed the roots was clearly
irrelevant.

This pattern holds also for polynomials of higher degree and was well known to
mathematicians of th&r'" and18!" century.

Theorem 4.8.1Let f(t) = t" + pyt" ' + -+ + p,_1t + p, be a monic polynomial of
degreen with rootsz, 25, ..., z,. Then

n
o= —(@m+rttr,)=— g T
j=1
P2 = TiTa+t: + Tp1Tp = E TjTg
1<j<k<n
p3 = —(T1rar3+ -+ Tp 2T 1Tp) = — E TjTpTy

1<j<k<t<n

= (—1)'zizg---2p

Example 4.8.2 Find a polynomial with roots 1,2,3,4. By the Theorem

po= —(14+2+3+4)=-10
pp = 1x2+1%x3+1%x4+2%x3+2%x4+3%4=235
ps = —(1%2%x3+1%2x4+1%3x4+2x3x4)=-50

py = 1%x2x3x4=24

sof(t) = t* — 103 + 35t% — 50t + 24.
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Example 4.8.3 Suppose we know for some reason (eg. we started Graeffe’s method)
that f(z) = 2* — 22 — 2 — 15 has an imaginary root of modulug5. We wish to

find the roots. Call this roat; = a + bi. Thenz, = a — bi is also a root soz;|* =

r1re = 5. Nowps = —15 = —x1003 = —bx3 SO we see easily that; = 3. But
p1=—T1—Ty—23=—2a—3 = —1S0-2a =20ra = —1. Sincelr,;|* =5 = a®>+b?

it follows thatb? = 4 sob = +2. Thus the roots are 1 + 2i, —1 — 2i and3.

Since Theorem 4.8.1 gives the close relation between the roots and the coefficients
one might hope that these formulas might give a way to find the roots given the coeffi-
cients. Unfortunately this will not work, but to some extent these formulas are the basis
for all attempts after the days of Cardano.

In Theorem 4.8.1 we can view, p, . .. as symmetric polynomials in the variables
x1,...,Ty. These symmetric polynomials are often known in the literature aslédie
mentary symmetric polynomial3hus we can view Theorem 4.6.1 as saying that the
symmetric functions;, = =% + - - - + ¥ are polynomials in the elementary symmetric
polynomials, eg. as Girard noteg = —p? + 3p; p» — 3ps. What is much more suprising
is the following:

Theorem 4.8.4 (Fundamental Theorem on Symmetric Polynomials).et
f(x1,29,...,2,) be a symmetric polynomial in variables with coefficients in an in-
tegral domainR. Thenf(x,z,,...,x,) can be expressed as a polynomial in the
elementary symmetric functiops, ps, . . ., p,, with coefficients inR.

The coefficient ringR will generally beZ or Q. Proofs of this theorem are con-
tained in the books byspenskandLang in additionAdams and Loustanasketch a
modern proof as an exercise and details of this proof can be fouRdénand Rosen-
berger We will simply illustrate by some examples.

Example 4.8.5In the two variable case the elementary symmetric functiong;are
—11 — 2o @andp, = zy15. Consider the symmetric polynomi@ = (z; — z,)°.
Expanding,D = 2?2 — 2x179 + 13 = sy — 2p, Wheres, = 22 + 22 as in§4.6. By
Newton’s Identitiessy = p? — 2p, SOD = p? — 2py — 2p, = p? — 4p, Note that this is
just the discriminant of the quadratic polynomjfak) = t* + pit + p,.

Example 4.8.6 For a real cubic polynomigf(t) = 3+ p;t? + pst + ps the discriminant
isD = (z1 — x2)*(x1 — 23)*(v9 — x3)> Wherex, o, . .., z3 are the roots. It is a bit
much work to put down here but it has been shown that

D = 18p1paps — 4pips + pips — 4ps — 27p3

If p; = 0 as in§4 then we simply havé® = —4p3 — 27p2 as in Theorem 4.4.1.
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More generally given a polynomigl(t) = ¢" + p;t"~* + - - - + p,, of degreen with
rootsxy, ..., x, thediscriminantis defined by

D= (2 - 3?2)2(371 - $3)2 (g — l"n)Q

i.e. the product of all differencels:; — z)* for j < k. The general formula, which
requires some advanced techniques to justify, is

S0 S1 0 Sp-1
Sl 52 o« e . Sn
D =det | S2 83t Sptl
i Spn—1 Sn " Son—2 i

where as ir6 s, = 2% + - - - + 2%. Newton’s Identities then can be used to exprBss
in terms of thep;’s. Note in particular that if the coefficients are real therD is real,
if the p; are all integers thef is an integer. The generalization of Theorem 4.4.1 is

Theorem 4.8.7 Let D be the discriminant of (¢) as above, where the coefficients
are real. Thenf(¢) has multiple roots if and only iD = 0. Otherwise ifD > 0 then
f(t) has an even number pfirs of imaginary roots, ifD < 0 then f(¢) has an odd
number ofpairs of imaginary roots.

It should go without saying that except for= 2, 3 calculating the discriminant is
a terrible way to tell iff(¢) has multiple roots or to count real roots.
We will need a few more calculations for the next section:

Example 4.8.8Let f(t) = t* + p1t> + pat? + p3t + p4 be a biquadratic polynomial with
rootszy, xs9, x3, r4. Consider

A = x14+2y— 23— 24
B = Ty — Tog+ T3 — T4
C = z1—x9—23+ 24

Leta = A%, b = B? andc = C?%. Thena + b + ¢, ab + ac + be and ABC are all seen
to be symmetric polynomials im, . . ., z,. We can calculate

a+b+c = 3p?—8py (4.15)
ab+ac+bc = 3pi — 16pips + 16p1ps + 16p5 — 64py (4.16)
ABC = pi—4pips + 8ps (4.17)
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We leave the first two calculations as rather hard exercises for the readeis{saesky
for example) and tackle only the third. We note that multiplying out we can have 3
types of termsxﬁ, :cka andz;z,z, where in each term, k, ¢ are different. Note that
x1 occurs only with %" signs, but each of, x5, x4, occur exactly twice with- signs
in the expressiond, B, C'. Thus the expansion oA BC will contain the term3c3°? for
eachj so it will containsz = 23 + 23 + 23 + 3.

To get a term of the forms?xk we must pick two ofA, B, C to pick out thej
and thek comes from the third. There are 3 ways to do this. It can be seen that two
of the ways give a =" sign but the third gives a+" so each of the 12 terms?;zk
occurs with a coefficient of-1 in the expansion. Now note, for example whee- 1,
Tixg + 2373 + 23Ty = 237 + 2379 + 2wz + 21y — 23 = 23(—p1) — 23. Repeating
this for j = 2, 3,4, adding and multiplying by the-1, we see that the contribution of
thezizy in ABC'is (o7 + 23 + 23 + 27)p1 + (23 + 23 + 25 + 23) = sop1 + ss.

Finally we have terms of the form;z;z, where we can takg < k£ < ¢. Note that
each such term can be generated 6 ways, i.e. we can choogdrtm either factor
A, B or C, then we have only two factors from which to choose thand we must
choose the from the remaining factor. By careful inspection, we see that 4 ways give
“+” signs and 2 ways give-" signs, thus the contribution of thejz;z, terms in the
productABC' iS 2x1x9x3 4+ 201 T0wy + 2012374 + 2000314 = —2p3.

Thus we can conclude thatBC' = s3 + (sap1 + s3) — 2p3 = 283 + Sop1 — 2p3 =
2(—p? 4 3pip2 — 3ps) + (pT — 2p2)p1 — 2p3 = —pi + 4p1ps — 8ps as claimed.

Exercise 23d10 points] Write the symmetric polynomidl(z, z2, z3) = z3xox3 +
T17T3T3 + T1w07s in three variables in terms of the elementary symmetric functions
p1, p2, p3 Of three variables.

4.9 Lagrange’s Solution of the Biquadratic

After Cardano’s publication of del Ferro, Tartaglia and Ferrari’s solution of the cubic
and biquadratic, many mathematicians tried to find similar methods for solving the
quintic (5th degree) and higher degree equations. They failed, as we now know they
must, and so, for the most part, history has not recorded their efforts. Several of the
attempts were more noteworthy than the others, for example Vandermonde’s almost
correct solution (in 1770) of the cyclotomic equatigh— 1 in radicals of degree less
than n (Gauss filled in the details in 1801). However the most significant attempt was
made by Lagrange. In order to attack higher degree polynomials he started with a de-
tailed analysis of the solution of the cubic and biquadratic. The information he gained
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was, of course, not enough to help him solve the quintic, but it laid the foundation for
the proofs by Ruffini, Abel and Galois that the quintic and higher degree polynomials
could not, in general, be solved by radicals. A good discussion of the history of these
ideas can be found iB.L van der Waerden™A History of Algebra”. Lagrange devised
solution methods for the cubic and the biquadratic, these are given in ChaptetUXd of
pensky We give his solution of the biquadratic since, unlike the cubic where Lagrange
re-derives Cardano’s equations (see Exercise 23e), the solution is given in a different,
and more elegant, form than that of Ferrari.

We start with a polynomiaf (t) = t* + pt® + ¢t* + rt + s where for notational
simplicity we are using the letters ¢, r, s instead ofpy, po, p3, p4 respectively. Let
x1, 9, T3, x4 bE the roots off (¢). As in example 4.8.8 we let

A = X1+ To— T3 — Ty
B = X1 — Lo+ T3 — T4 (418)
C = z1—x9—23+ 24

anda = A%, b = B? andc = (2. We then have

at+b+c = 3p*—8¢=u (4.19)
ab+ac+bc = 3p* — 16p°q + 16pr + 16¢*> — 64s = v (4.20)
abc = (p® —4pq+8r)* =w (4.22)

From Theorem 4.8.1 it follows that b, ¢ are the roots of theesolvent cubic
g(t) =t +ut* + vt +w
The cubic equation(t) = 0 can be solved by Cardano’s method (or Lagrange’s method
in Exercise 23e) sa@, b, c can be calculated. TheA, B, C' can be found by taking
square roots of, b, ¢, being careful only to select signs so that
ABC = —p® +4pq — 8r
as required by Example 4.8.8. We then have equations (4.18) together with the equation

—p:x1+x2+x3+x4

Thus we have a system of 4 linear equations in the 4 unknewns, x3, 4, which can
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be solved once and for all by

—p+A+B+C
r1 =
4
I -p+A-B-C
2 4
-p—A+B-C
r3 =
4
—p—A—B+C
Ty = 1

While this method is very elegant in theory, we warn the reader that in practice we
may haveu # 0 in the resolvant cubic, and in any case the resolvant cubic may have a
messy solution, the square roots of which must then be calculated!

We end this section with an analysis of Lagrange’s method. It is based on the
following theorem, which is a special case of a theorem proved by Lagrange. This
theorem deals with what we might calbmewhat symmetric polynomiatsthat some
permutations, but perhaps not all, may leave the value unchanged.

Theorem 4.9.1Letg(xq, xo, ..., z,) be a polynomial im variables. Suppose that un-
der all permutations of the variables the polynomial takes on exacthjfferent values,
91 = 9,92, -, 9m then there is a polynomiaf(t) of degreem whose coefficients are
polynomials in the elementary symmetric functionsof .., x,, so that the roots of

f(t)aregi, gz, -, gm-

The idea of the proofis to construct the elementary symmetric functtons. , B,
of theg;,i.e.P, = g1+ g2+ -+ gm, Pu = 192+ gm €1C. It can be seen that
the P; are actual symmetric functions and hence by Theorem 4.8.4 expressible in the

elementary symmetric functions an, ..., z,. But by Theorem 4.8.%,...,g9,, are
roots of f(t) = t™ + Pit™ ' + .- + P,.
In Lagrange’s solution of the biquadratic we took fgr, ..., z,) the somewhat

symmetric functiorz = (z; + z» — 23 — x4)?. It should be noted that permuting the
variables gives exactly three different values, mainlyandc. Thusa, b, c are roots of
a polynomial whose coefficients are polynomialgim, » ands, mainly the resolvent
polynomial.

In connection with Theorem 4.9.1, Lagrange noted that if one multiplied the number
of different values taken by(z4, ..., z,) by the number of permutations which left
g(x1,...,z,) unchanged, the product will always bk the number of all permutations
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of then variables. For example, in the paragraph abavegkes on 3 distinct values
under permutations, but there are 6 ways to permute the variables so rigraiains
unchanged4 x 6 = 24 = 4!. At the time Lagrange lived, group theory had not yet
been invented. When group theory was invented 100 years later the mathematician
Camile Jordan named a now famous theorem of group theory after Lagrange because
Lagrange’s observation was simply a special case of this general theorem.

Exercise 23¢30 points] Derive Lagrange’s solution of the cubic. Lfgt) = >+ pt? +

gt + r have rootse;, =5, x5 and setd = z; + wzy + w?zs andB = 71 + wlxy + was
wherew = _1+T\/§Z is a cube root of 1. Show that= A? takes on only 2 values under
permutations of the roots, mainlyandb = B? and thus these two values are roots of
the resolvent quadratic. Find the coefficients of the resolvent quadratic in tepmg of
andr. Note also thatd B is a symmetric function of the roots so calculat® in terms

of p, ¢, 7. Then solving the resolvent quadratic, taking appropriate cube roat$ ob
get the correcd B, the formulas ford, B and—p = =1 + x5 + x3 give three linear
equations in 3 unknowns which can be solved to obtain Cardano’s Equations.

4.10 Insolvability of the Quintic

Lagrange had hoped that his study of solution methods of the cubic and biquadratic
would lead to a solution of the quintic (5th degree polynomial equation). After all, by
his Theorem, all one needed to find was a suitable somewhat symmetric function of 5
variables that took on exactly 4 different values under permutation of the variables. If
this function was a power of a linear function of the variables, then with the additional
equation—p; = 7 + - - - + x5 he could then solve the “resolvent biquadratic” and take
roots to obtain 5 equations in 5 unknowns which could be solved for the roots of the
original polynomial. Unfortunately, such a function does not exist.

While Lagrange was optimistic that the solution method would be found, the Ital-
ian mathematian Paulo Ruffini realized that Lagrange’s analysis could lead instead to
a proof that no solution could exist. Ruffini claimed that he had such a proof in 1798
but many mathematicians were skeptical. What Ruffini actually proved was that La-
grange’s method would not lead to a solution, but there was a gap in his argument that
if Lagrange’s method did not work, no method would work. In 1824 the 22 year old
Niels Henrik Abel filled the gap in Ruffini’'s proof.

It is important to understand exactly what Ruffini and Abel proved. They started
with variables =1, z,, ..., x5 and defined, ps,...,ps as in 4.8.1. The polynomial
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f(t) = t> 4+ pit* + --- + ps is called the general quintic. The goal was to solve this
in terms ofpy, . .., p5 using only the algebraic operations of addition, subtraction, mul-
tiplication, division and the taking of roots (square roots, cube roots, etc.). In other
words, the goal is to recover the variables. . . , x5 from the polynomials;, ..., ps
using only algebraic operations. Of course if this were possible then by replacing the
p, by the coefficients of an actual polynomial and then doing these algebraic operations
then the numbers,, ..., x5 obtained would be the actual roots.

For example, in the case of the quadratic,deaeral quadratids f(t) = t*>+pt+q

. — 2__
wherep = —(z; + z3) andq = z,2,. Thegeneral quadratic formula: = PV V2p4q
then recovers;, z, from p, ¢ as follows:

—pENP—4q  mi+aE /(v +22)? — daya,
2 2
x1+x2i\/x%—2$1x2+x§
2
1+ xo £ \/(x1 — 29)?
2
T+ X9 + (11 — 29)

2

= 21 0lxy

A solution of this type is called solution by radicalsfor the general equation.
What Ruffini and Abel proved is that a solution by radicals did not exist for the general
quintic. In particular, there is no single solution method which works for all quintic
equations.

Several questions still remain. First, perhaps while no one single solution method
works for all quintics, maybe there are several methods one of which would work for
any given quintic. For instance, Cardano thought, wrongly as we now know, that 13
different methods were necessary to solve all cubics. Perhaps we need 13 methods to
solve all quintics? There certainly are some types of quintics which can be solved, for
example the cyclotomic equatiail — 1 = 0 was solved by radicals by Vandermonde.
Perhaps different methods would solve other types of quintics. The first question then
is whether this is actually true.

Even if it was not possible to have a finite list of solution methods covering all
quintics, one would surely expect that for any given quintic with rational coefficients
the roots would be algebraic expressions involving rational numbers, sums, differences,
products, quotients and roots of various orders. So the second questionis: “is this true?”
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In 1831 Evariste Galois showed that in fact the answer to both questions is no! For
example, not only is there no algebraic method to find the roats ef6x + 3 = 0 but
the roots cannot be expressed in terms of radicals. Galois went much further than this,
by showing that this negative result applies also to polynomials of degree higher than 5.
More importantly, he gave a method for determining whether or not a given polynomial
could be solved by radicals (at least in principle, if not in practice). Galois’ method,
like the method of Ruffini and Abel following Lagrange, involves permuting the roots
of the polynomial. But unlike Lagrange, Galois does not allow all permutations of the
roots, only agroup of permutations which somehow preserve the algebra of numbers
which can be built up from the roots (the set of such numbers is calleddhéeld of
the polynomial). Thus Galois replaces the polynomial by its root field and then replaces
the root field by the abstract algebraic object now known a&#ieis groupand shows
that solvability of the polynomial is equivalent to some facts about the structure of the
group.

Galois’ proof method, now known &Salois Theoryremains this day as one of
the most elegant theories in mathematics. As there are many good accounts in the
mathematical literature we will not pursue this any further here. For the reader who
wants a reasonably elementary introduction we recommend the accdirkhioff and
Mac Laneor the one irFine and Rosenberger

The technique of replacing one mathematical object (eg. polynomials) by others
easier to analyze (eg. fields, groups) has become central in modern mathematics. In
addition there are many important direct applications of Galois theory. In a modern
research journal such as tBeillletin of the American Mathematical Socighe name
“Galois” appears as often as the name of any other single mathematician. Yet Galois’
work did not bring him any fame, or even recognition, in his lifetime. Galois sent two
papers to Cauchy, who lost them. He sent one paper to Fourier who promptly died, and
this paper is also lost. His mostimportant paper (1831) was given to the mathematicians
Poisson and Lacroix to review, but they couldn’t understand it. A year later Galois was
shot in a duel, not yet 21 and not yet known. Finally in 1846 the paper was published
by Liouville in his journal. However the importance of Galois’ work did not become
apparent to the mathematical public until 1870 when Jordan published his full account
of Galois theory.



