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Chapter 4

Ancient and Modern Algebra

THE EXACT SOLUTION OFPOLYNOMIAL EQUATIONS

In this chapter we turn our attention to exact solutions of polynomial equations.
The Babylonians used tables of values ofn3 + n to find numerical solutions of easy
cubic equations, however the Greeks around the time of Euclid became obsessed with
exactness. Largely due to the dominant influence of Euclid’s Elements there was a
great interest in exact solutions up to the proof by Abel and Galois of the impossibility
of such solutions in general. In the first few sections of this chapter we review some of
the history of exact solutions. A good overview of this history is included in B.L van
der Waerden’sA History of Algebra.

4.1 Solutions of Quadratic Equations

Although Euclid, in keeping with the philosophy of his time, rejected all numbers
he still indirectly considered quadratic equations. His version of the solution of the
quadratic equationax + x2 = b2 is the geometric theorem:

If a straight line be bisected and a straight line be added to it in a straight
line, the rectangle contained by the whole (with the added straight line) and
the added straight line together with the square on the half is equal to the
square on the straight line made up of the half and the added straight line.

Essentially this is completing the square.
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The Arab mathematician Al Khwarizmi in 825 reacted negatively to the Euclidean
avoidance of numbers and invented algebra as an alternative to geometry. Unfortu-
nately slightly later Arabs, feeling uneasy about the lack of preciseness of the algebra
brought back in the geometry to justify the algebraic arguments. Al Khwarizmi’s al-
gebra reached Europe in this form. Thus we illustrate Arabic methods from the work
of Abu Kamil (see for instance Martin Levey,The Algebra of Abu Kamil), who wrote
about 75 years after Al-Khwarizmi. Abu Kamil starts out his algebra with the state-
ment:

First it is necessary for the reader of this book to know that there are three
categories according to Muhammad al-Khwarizmi in his book. They are
roots, squares and numbers.

Thus in the equationx2 + 10x = 39, x is the root,x2 is the square and 39 is the
number. This equation is then phrased as “the square plus 10 roots equal 39.” The
solution which Abul Kamil gives is completing the square.

You always take 1/2 the roots; in this problem it is 5. You multiply it by
itself; it is 25. One adds this to 39; it is 64. Take its root; it is 8. Subtract
from it 1/2 the roots or 5; 3 remains. It is the root of the square. The square
is 9.

It should be noted that the desired solution is the square, not the root. Abul Kamil
then justifies this solution method with geometry (see Figure 4.1).

Abul Kamil goes on to do 68 more problems involving quadratic equations or equa-
tions leading to quadratics.

This philosophy on solution of equations, and especially the idea that “the root”
was a length, and the and “the square” was an area survived through the 16th century
along with the rhetorical notation. Modern algebraic notation was introduced by Stevin
and Harriot in the early 17th century. Descartes was instrumental popularizing this
new notation and in separating the idea of “degree” from the geometrical notion of
dimension. Although a bit out of sequence historically we give Descartes’ solution of
the quadratic by way of contrast to that of Abu Kamil.

Descartes says:

For example, if I havez2 = az + bb, I construct a right triangle4NLM
with one sideLM , equal tob , the square root of the known quantitybb, and
the other side,LN , equal to1

2
a, that is, to half the other known quantity

which was multiplied byz, which I supposed to be the unknown line. Then
prolongingMN , the hypotenuse of this triangle toO, so thatNO is equal
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Figure 4.1: Abu Kamil’s solution tox2 + 10x = 39

to NL, the whole lineOM is the required linez. This is expressed in the
following way:

z =
1

2
a +

√
1

4
aa + bb

This is essentially the first statement in more or less modern language of the general
quadratic equation. (See Figure 4.2).

Incidentally, Descartes justification of his formula is algebraic, the point of his ge-
ometry is to establish that the number

√
aa/4 + bb exists, i.e. it is the length of the

hypotenuse of the triangle4LMN .
Although later in his book, Descartes allows negative coefficients and negative

roots, at this point in his book, the first chapter on analytic geometry, only positve
coefficients and roots are considered.

We now know that the complete solution to all quadratic equationsax2 +bx+c = 0
is given by the general quadratic equation

x =
−b±

√
b2 − 4ac

2a

This solution is valid even whena, b andc are complex numbers and when the quantity
inside the square root sign is positive, negative or imaginary.
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Figure 4.2: Descartes’ Solution ofz2 = az + b2

4.2 Omar Khayyam and Viete

SOLUTION OF THE CUBIC
Omar Khayyam, the Persian poet and mathematician of the second half of the 11th cen-
tury, was one of the first mathematicans to consider the cubic equation. Like Descartes
6 centuries later he avoided associatingx2 with area andx3 with volume, but unlike
Descartes who disassociated the two concepts, Omar Khayyam got around this prob-
lem with the statement “Every time we shall say in this book ‘a number is equal to a
rectangle’, we shall understand by the ‘number’ a rectangle of which one side is unity,
and the other a line equal in measure to the given number...”

Figure 4.3: Omar Khayyam’s solution of Cubic (Modern version)
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Omar Khayyam then solves the equation such as “a cube and 4 sides equals 12”, i.e.
x3+4x = 12 by making making the substitutionx2 = 2y, and noting thatx2 = 2y is the
equation of a parabola. The cubic is then written2xy+4x = 12 or2x(y+2) = 12 which
Khayyam notices is the equation of a hyperbola which intersects the parabola in one
point. Thex coordinate of this point is the solution, which is described geometrically,
but not algebraically. Other cubic equations were solved by other use of various conics.
Of course Omar Khayyam did not use the modern algebraic notation used above, rather
he used ratios, and of course, he was not able to graph using cartesian coordinates which
were not invented until 350 years later.

Again, jumping out of historical sequence, we mention Viete’s method of finding
the real roots of a cubic. Viete was a French mathematician who made advances in
algebra, but is most noted for his many trigonometric identities. He developed an al-
gebraic notation which was an advance over what had been used previously and which
was adopted by many French 17th century mathematicians such as Fermat. It is fortu-
nate for us that neither Descartes or Leibniz adopted Viete’s notation, for this notation
is inferior to our modern notation.

Viete first uses a change of variables to reduce a cubic to the formy3 + py = q, see
Theorem 2.5.1, this is a reduction we now use in all exact solutions of cubics. Viete
then letsh =

√
4|p|/3, k = 3/(h|p|) and substitutesy = hz and then multiplies

through byk. One gets either the equation

4z3 + 3z = C

or the equation
4z3 − 3z = C.

In the case that the original equation had three real roots the second equation is obtained
with |C| < 1. Viete then used his trigonometric identitycos 3φ = 4 cos3 φ − 3 cos φ
and the substitutionz = cos φ to obtain the equationcos 3φ = C, of which he notes
there are three roots. If|C| ≥ 1 or the first equation is obtained it is not clear that Viete
knew how to proceed, however it is now known that similar substitutions involving the
hyperbolicsinh andcosh will provide the one real root (seeBirkhoff and MacLane). It
should be noted that Viete realized from his method that solving cubic equations with
three real roots was equivalent to the problem of trisecting an angle.

4.3 History of the Cubic and Biquadratic

The solution of the cubic equation by algebraic methods was first accomplished by
Scipione del Ferro, Professor of Mathematics in Bologna, Italy, apparently in the year
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1515. del Ferro did not publish his solution but it was known to some of his pupils, no-
tably Antonio Maria Fiore, who in 1535 challenged a young man nicknamed Tartaglia
to a contest in solving the equation “the first power plus the cube equal to a number.”
Tartaglia managed to solve the problem the night before the contest and defeated Fiore.

The distinguished physician Cardano, who was at that time engaged in writing an
elementary book on mathematics, heard about Tartaglia’s success and in 1539 tried to
persuade Tartaglia to expain his method. Tartaglia had his own intentions to publish
and first refused but later was induced to give his method to Cardano, but even then
only in obscure verses, and only after Cardano swore a solemn oath not to reveal the
method until Tartaglia had published.

Cardano mastered and expanded Tartaglia’s method and became impatient to pub-
lish. In 1543 Cardano received permission to inspect del Ferro’s papers and found the
original solution at which point he published his famousArs Magna(it appeared in
1545). Tartaglia was furious and the ensuing debate between Tartaglia, Cardano and
Cardano’s former houseboy and student Ferrari lasted over 30 years. Ferrari, who had
been present when Tartaglia gave Cardano the method, discovered how to solve the
biquadratic (fourth degree) using the solution to the cubic. Cardano included this in his
book however with the qualification:

Although a long series of rules might be added and a long discourse given
about them, we concude our detailed consideration with the cubic, others
being merely mentioned, even if generally, in passing. For as the first power
refers to a line, the square to a surface, and the cube to a solid body, it would
be very foolish to go beyond this point. Nature does not permit it.

Cardano used a rhetorical notation (no symbols) and did not allow negative coef-
ficients. Thus his book has separate chapters for the 13 different cases of cubics that
Cardano identifies. A nice translation ofArs Magnahas been given by T.R. Witmer and
published under the titleThe Great Art.

The one case where the cubic has three real roots was called the irreducible case.
Cardano could not solve this case since the real roots could be found only by taking the
square roots of imaginary numbers. Rafael Bombelli in 1572 mastered enough complex
arithmetic to solve this problem. Viete, who did not accept negative numbers, much less
imaginary ones, invented his trigonometric method to handle this case.



4.4. ALGEBRAIC SOLUTION OF THE CUBIC 117

4.4 Algebraic solution of the Cubic

The modern algebraic solution of the cubic is essentially that described by Cardano
with some improvements by Viete. However, since we can now take square and cube
roots of negative and imaginary numbers we need only one case to handle all cubics,
including the “irreducible case.” We give an exposition of the method combining that
of Birkhoff and MacLaneandUspensky.

Given a cubic polynomial equation (we can assume monic)

x3 + ax2 + bx + c = 0 (4.1)

the first step is to do a change of variables to eliminate thex2 term. This can be done
using Horner’s process, see theorem 2.5.1. In particular, lettingy = x + a/3 we get the
equation

y3 + py + q = 0 (4.2)

wherep = f ′(−a/3) = b − a2/3 andq = f(−a/3) = c − ba/3 + 2a3/27. If we can
solve Equation 4.2 fory then the solutions forx are given byx = y−a/3. Thus for the
rest of this section we will assume the equation to be solved is Equation 4.2. The trick
(due to Viete) is to make the substitution in Equation 4.2 of

y = w − p

3w
(4.3)

From the binomial theorem and algebra we get

w3 − p3

27w3
+ q = 0

or
(w3)2 + qw3 − p3/27 = 0 (4.4)

which is quadratic inw3 and can be solved by the general quadratic equation as

w3 = −q/2±
√

q2/4 + p3/27

Thus we have two possible values forw3, and, unless one of these is 0, three possible
cube roots for value ofw3. However, upon substituting in Equation 3 we find only 3
separate values ofy i.e. the three cube roots of just one of the solutions of Equation
4.4. In fact, we only need to calculate one cube root.

To see this, it is known that the two rootsα, β of the quadratic equationx2+bx+c =
(x− α)(x− β) = 0 satisfyαβ = c. Thus the two roots (i.e. values ofw3) of Equation
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4.4 multiply to give−p3/27. Thus ifA is a cube root of one solution of Equation 4.4,
i.e. A3 is a solution to

x2 + qx− p3/27 = 0 (4.5)

we can letB = −p/(3A) and it is seen thatB3 is the other solution to Eq. 4.5 since
A3B3 = −p3/27. A is one solution forw in Equation 4.4 soy = w − p/(3w) =
A − p/(3A) = A + B is a solution for Eq. 4.2.B is another solution forw but then
−p/(3B) = A sinceAB = −p/3 so the solution obtained for Equation 2 is again
B + A.

Moreover, ifγ = −1/2 +
√

3/2i thenγ is a cube root of 1 and ifA is the cube root
of some complex number thenγA, γ2A are the others. Thus ifA3 satisfies

A3 = −q/2 +
√

q2/4 + p3/27

andB = −p/(3A), the three solutions to Equation 4.2 are

y1 = A + B
y2 = γA + γ2B
y3 = γ2A + γB

These last three equations are known as Cardano’s equations.

As an example we consider the equation

y3 − 15y − 4 = 0

solved by Bombelli in 1572. Then−q/2 +
√

q2/4 + p3/27 = 2 +
√

16/4− 153/27 =
2 +

√
4− 125 = 2 +

√
−121 = 2 + 11i. Finding a cube root of2 + 11i by, say,

DeMoivre’s law (Bombelli most likely used trial and error) we getA = 2 + i. Thus
B = −p/(3A) = 5/(2 + i) = 2− i and the three solutions are

y1 = A + B = [2 + i] + [2− i] = 4

y2 = γA + γ2B

= [(−1−
√

3/2) + (
√

3− 1/2)i] + [(−1−
√

3/2)− (
√

3− 1/2)i]

= −2−
√

3.

y3 = γ2A + γB

= [(−1 +
√

3/2) + (−
√

3− 1/2)i] + [(−1 +
√

3)/2)− (−
√

3− 1/2)i]

= −2 +
√

3
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We summarize Cardano’s solution as follows, while not quite as compact as the
quadratic equation, it is just as mechanical.

To solve x3 + ax2 + bx + c = 0

Let p = b − a2/3, q = c − ba
3

+ 2a3

27
Note that if a = 0 then p = b and

q = c.

Let A be any cube root of −q/2±
√

q2/4 + p3/27, where the sign ± is
chosen so that A 6= 0. Let B = −p/(3A) and γ = −1+

√
3i

2
.

Then the solutions are

x1 = A + B − a

3

x2 = γA + γ2B − a

3

x3 = γ2A + γB − a

3

Maple Implementation

To obtain Cardano’s solutions for a cubic f simply use the com-
mand

solve(f, x);

But unless Maple sees an obvious simplification the solution will be
quite literally the one above.

In the following two exercises do all work by hand, do not use Maple, except,
perhaps, as a check.

Exercise 4.4.1[30 points] Use the method of this section to find the 3 complex roots
of x3 + 6x− 20 = 0. Give an exact answer.

Exercise 4.4.2[40 points] An open wooden box (without a top) is in the shape of a
cube with each outer edge 10 inches long. If the volume is 500 cubic inches what is
the thickness of the wood (assuming uniform thickness). Give an exact, not decimal,
answer! This problem is taken fromUspensky.
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We remark that the number inside the radical sign is(−4p3 − 27q2)/(−108) and
the numerator has a special meaning. Suppose that Equation 4.2 has the three complex
rootsz1, z2, andz3. Then(y − z1)(y − z2)(y − z3) = y3 + py + q and so we get

z1 + z2 + z3 = 0

z1z2 + z1z3 + z2z3 = p

−z1z2z3 = −q

Now letD = (z1−z2)
2(z1−z3)

2(z2−z3)
2. A straight forward multiplication using

the three formulas above shows thatD = −4p3 − 27q2, i.e. the numerator under the
radical sign.D is called thediscriminantof Equation 4.2. This should be compared
with the quadratic case where ifz1, z2 are the two roots ofx2 + bx + c = 0 then
(z1 − z2)

2 = b2 − 4c. As in the quadratic case, the discriminant in the cubic case gives
us information on the number of imaginary roots:

Theorem 4.4.1 LetD = −4p3−27q2 be the discriminant of the equationy3+py+q =
0 wherep andq are real. IfD > 0 this equation has3 distinct real roots, ifD < 0 this
equation has one real root and2 imaginary roots. IfD = 0 this equation has multiple
real roots.

Note that in the case of 3 real roots thatq2/4+p3/27 < 0 soA, B in the solution are
imaginary numbers. So imaginary numbers may be required to find the real solutions
of a real equation.

4.5 Solution of the Biquadratic Equation

The method still in use is essentially the method due to Ferrari. The first step, as in the
case of the cubic is to simplify the equation, by a linear change of variable using 2.5.1
to get rid of thex3 term. Thus we may assume our equation is

y4 + py2 + qy + r = 0 (4.6)

The trick is to adduy2 + u2/4 to both sides of the equation whereu is, for now,
unknown. Thus we get

y4 + uy2 + u2/4 = (u− p)y2 − qy + (u2/4− r)

or
(y2 + u/2)2 = (u− p)y2 − qy + (u2/4− r) (4.7)
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The game is to now chooseu so that the quadratic on the right side is a complete
square, i.e. its discriminant should be 0. Thus we should have

q2 − 4(u− p)(u2/4− r) = 0

or
u3 − pu2 − 4ru + (4rp− q2) = 0 (4.8)

Now Equation 4.8 is a cubic inu, so we can solve (in principle!) using the methods of
the previous section. It is enough to find any one rootu. Equation 4.7 then becomes

(y2 + u/2)2 = (ey + f)2

for

e =
√

u− p and f =

√
u2

4
− 4 = −q/2e.

We then have
(y2 + u/2)2 − (ey + f)2 = 0

or
[(y2 + u/2) + (ey + f)][(y2 + u/2)− (ey + f)] = 0. (4.9)

Thus solving Equation 4.6 is reduced to solving the 2 quadratics

y2 + ey + (f + u/2) = 0

y2 − ey − (f − u/2) = 0

In fact, the left hand side of Eq. 4.8 evaluated atu = p takes the value−q2. Thus if
p, q, r are all real, Theorem 2.6.3 says that there is at least one realu solving Eq. 4.8
with u > p. Taking this solution,e, f are both real and so the left hand side of Eq. 4.9
is simply the factorization ofy4 + py2 + qy + r into real quadratics as guaranteed by
D’Alembert’s Theorem, Theorem 1.9.5!

Exercise 4.5.1[40 points] Solvex4+5x2+2x+8 = 0 using the method of this section.
Find an exact solution by hand and show work.

Maple Implementation

As before you can try

solve(f,x);
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However, unless there is a major simplification, Maple will not give
Ferrari’s solution, often returning only RootOf(f,x) . Generally
Maple feels that the Ferrari solution is so complicated that you don’t
want to see it. If you insist on seeing the full solution, give the com-
mand

_EnvExplicit := true;

before executing solve . You’ll be sorry you did.


