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2.7 Graphing

A good way to find the approximate location and number of real roots is to use a com-
puter program to graph the polynomial. In this section we will describe some of the
things you should look for in the graphs. We will consider real polynomials only and
we will use results from calculus.

Maple Implementation

The easiest way to plot a polynomial is to define the polynomial
as an expression and then use plot , for example

f := xˆ4 -3*xˆ3 + 2*xˆ2 - x + 1;
plot(f, x=-1..3); #note x-range only is specified.
plot(f, x=-1..3,y=-15..15); # here both are specified

If you only specify the x range the y range is then determined auto-
matically. Various options can be selected from the graphics toolbar
(click on picture to get toolbar) such as a choice of axes style. The
“1:1” option which gives constrained or unconstrained scaling
should usually be left at the default setting of unconstrained for
polynomials as different units in the x and y variables are usually
necessary to plot polynomials.

Several polynomials can be plotted on the same axes, for exam-
ple

plot({f,g,h}, x=-3..3);

plots the three polynomials f,g,h on the same axes in different
colors. You may have to think a little bit, or plot the functions first
individually, to figure out which is which.

Alternatively you can save each single plot under a variable
name, specifying a color, and then display the plots on one graph.
Do do this use the following: (output is not given)

with(plots,display);
P1:=plot(f, x=-3..3, color=red):
P2:=plot(g, x=-3..3, color=green):
P3:=plot(h, x=-3..3, color=blue):
display({P1,P2,P3});
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Some comments are in order. The first command, with(plots,
display); needs to be done only once each Maple session,
the display procedure is in the Plots package and not auto-
matically available for use. Note the definitions of P1,P2,P3 are
ended by colons, not semicolons. This is so the data will NOT
display on your screen. For other colors see the help help page
?plot[color] and for other available options see the help page
?plot[options] .

We first observe that the behavior of the polynomial for largex depends only on the
highest degree monomial and the behavior near the origin depends on the lowest degree
non-zero monomial. We can assume without loss of generality that our polynomial is
monic.

Theorem 2.7.1 Let p(x) be a monic polynomial of degreen > 0. Then ifx is a large
positive numberp(x) is a large positive number, ifx is negative with a large absolute
value,p(x) is a large positive number ifn is even, a large negative number ifn is odd.

Proof: This follows from the fact that

lim
x→∞

p(x)

xn
= 1.

Theorem 2.7.2 Let p(x) have a root of multiplicitym at x = c. If m is even either
p(x) ≥ 0 nearx or p(x) ≤ 0 nearc. If m is odd thenp(x) takes on positive values on
one side ofc and negative values on the other.

Proof: With the help of a Taylor’s series expansion aboutc we have

lim
x→c

p(x)

(x− c)m
= am.

Since polynomials are continuous functions the Intermediate value theorem of cal-
culus says

Theorem 2.7.3 Let α, β be real numbers. Ifp(α) < 0 andp(β) > 0 thenp(x) has at
least one root betweenα andβ.

Combining this with 2.7.2 and 2.7.1 we have the following
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Theorem 2.7.4 Let α, β be real numbers. Ifp(α) < 0 andp(β) > 0 thenp(x) has an
odd number of roots betweenα andβ, counted according to multiplicity. In particular
a polynomial of odd degree has an odd number of real roots, and a polynomial of even
degree has an even number of real roots, counted according to multiplicity.

Something to look for in the graph of a polynomial are turning points. These are
local maxima or minima and correspond to values ofx wherep′(x) has a zero of odd
multiplicity. Since the degree ofp′(x) is always one less than that ofp(x) we have

Theorem 2.7.5 A polynomialp(x) of even degree has an odd number of turning points,
and a polynomial of odd degree has an even number turning points.

Rolle’s Theorem gives

Theorem 2.7.6 If α, β are real roots ofp(x), α < β there is at least one turning point
c, α < c < β.

A zero of multiplicity greater than one is also a zero ofp′(x) therefore we get:

Theorem 2.7.7 If p(x) has real roots in an intervalα < x < β whose multiplicities
add up tom, thenp′(x) has at leastm− 1 real rootsc with α < c < β.

The functionp(x) is concave downfor α < x < β if for every α < x1, x2 < β
the line from(x1, p(x1)) to (x2, p(x2)) lies below the graph of the function.Concave
up is defined similarly. In calculus we learn thatp(x) is concave down in an interval
if p′′(x) < 0 in that interval and concave up wherep′′(x) > 0. Points where the graph
changes from concave down to concave up are called inflection points, and are points
wherep′′(x) has a root of odd multiplicity. Applying our earlier theorems of this section
to p′(x) we obtain

Theorem 2.7.8 If p(x) is of even degree thenp(x) has an even number of inflection
points and is concave up for positive or negativex of large absolute value, ifp(x) is of
odd degree≥ 3 it has an odd number of inflection points, is concave down for negative
x of large absolute value and concave up for large positivex. Finally, there are an odd
number of inflection points between every pair of turning points.

We illustrate these concepts in Figure 2.2.

Exercise 2.7.1[10 points] Graph the following polynomial identifying roots (estimate
multiplicity), turning points, and inflection points. Do not solve for roots etc.p(x) =
−2− 2x + 5x2 + 5x3 − 4x4 − 4x5 + x6 + x7.
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Figure 2.2: Graph of a polynomial function

2.8 Descartes’ Rule of signs

Descartes was the first to explicitly state this rule which appears in Chapter 3, the theory
of equations chapter, of his famous La Geometrie. It has been suggested that the general
content of this rule was known earlier by the English mathematician Harriot (the first
mathematician to set foot in America) and also by Cardano. In fact, Descartes probably
inferred this rule from Cardano’s “Ars Magna.” Cardano did not believe in negative
coefficients, and so Cardano would write a polynomial equation asx3 + 6x = 20 (or
as Cardano put it without algebraic notation “let the cube of GH and six times the side
of GH equal to 20”. Thus Cardano has 13 different chapters dealing with the 13 types
of cubic equations he identified and in each of these chapters he shows how to find the
positive roots, and proves his method by Euclidean geometry. Descartes was the first
major mathematician to write equations in our modern form asx3 + 6x − 20 = 0 and
so have only one type of cubic equations. He was thus the first to be able to state the
rule of signs as we now do. Descartes was willing to consider negative roots but called
them “false” roots, in counting roots therefore he only considered positive real roots.
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In the polynomialp(x) = a0 + a1x + a2x
2 + · · · + anx

n we say that we have a
change of signs ifaj is positive andaj+1 is negative or vice versa. Thus inp(x) =
−3 + 2x + 3x2 − 4x3 + x4 we have 3 changes of sign. If one coefficient is 0 we skip
it, thusp(x) = −3 + 2x3 + 3x5 − 4x7 + x11 also has 3 changes of sign.

Theorem 2.8.1 (Descartes’ Rule of Signs)The number of positive real roots, counted
according to multiplicity, of a real polynomial differs by an even number from the num-
ber of changes of sign and is never more than the number of changes of sign.

Proof: We can assume without loss of generality thatp(x) is monic anda0 6= 0
(why?). Thus ifp(0) = a0 < 0 since the leading coefficient is 1 there must be an odd
number of changes in sign, but by Theorem 2.7.4 (lettingα = 0 andβ be large)p(x)
has an odd number of positive roots. A similar argument holds ifp(0) > 0. Thus the
number of changes in sign has the same parity (even or odd) as the number of positive
roots.

We now argue by induction, if the degree is 0 there are no roots or sign changes.
Now suppose Descartes’ Rule holds for polynomials of degree less thanp. Let prts(f )
denote the number of positive roots of polynomialf and sch(f ) be the number of sign
changes. We have

sch(p) ≥ sch(p′) ≥ prts(p′) ≥ prts(p)− 1

where the last inequality comes from Theorem 2.7.7. But sch(p) and prts(p) have the
same parity hence sch(p) cannot equal prts(p)−1 so we must have sch(p) > prts(p)−1
which, since we are dealing with integers, implies sch(p) ≥ prts(p).

We remark that applying Descartes’ rule to the polynomialp(−x) we can estimate
the number of negative roots. Further, for any real numberc, by calculating the Taylor
expansion about(x− c) we can estimate the number of real roots greater thanc.

Thus forp(x) = −3 + 2x3 + 3x5 − 4x7 + x11 Descartes’ rule says that we have
either 1 or 3 positive roots.p(−x) = −3 − 2x3 − 3x5 + 4x7 − x11 so there are 0 or 2
negative roots. 0 is not a root so there are 1, 3 or 5 real roots. In fact this polynomial
has only 1 real root.

2.9 The Bisection Method

The bisection method is our first method for finding roots of a real polynomial. The
advantage of this method is that it is simple to implement and can be used on continuous
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functions other than polynomials. Disadvantages of this method are that it only finds
real roots, it is slow, it doesn’t work on roots of even multiplicity and although in theory
it can give high accuracy, and this accuracy can be easily measured, in practice it is hard
to acheive great accuracy.

Let p(x) be a real polynomial. By graphing or trial and error findα, β so that
p(α) < 0 andp(β) > 0. By the Intermediate Value Theorem (Theorem 2.7.3)p(x) has
a root betweenα andβ. Let a1 = α, b1 = β andc1 = (a1 + b1)/2 be the midpoint.
Calculatep(c1). If p(c1) > 0 then there must be a root betweena1 andc1 so leta2 = a1,
let b2 = c1. However ifp(c1) < 0 then there must be a root beweenc1 andb1 so choose
a2 = c1 andb2 = b1. The case thatp(c1) is exactly zero is so remote in practice as to not
be worth considering. Thus, in either casep(a2) < 0 andp(b2) > 0, letc2 = (a2+b2)/2
be the midpoint and continue as before. Each iteration of this algorithm will halve the
difference|bk − ak| so eventually these two numbers will be close together so we let
ck +1 be our final answer. The error in the root is, if our calculations have been accurate
so far, is no more than|bk − ak|/2 = |α − β|/2k.

Exercise 2.9.1[10 points]. Use the bisection method to find a real root ofp(x) =
−1 + 2x + 3x2 − 3x4 + x5 accurate to 3 significant figures.

Exercise 2.9.2[15 points] Write a MAPLE procedure to calculate a real root of a real
polynomial inside a given interval using the bisection method.

2.10 Horner’s Method

Although it is now common for numerical analysts to call any method that uses Horner’s
process “Horner’s Method” the method that classically went by that name is one that
appears to have been well known in China in the 13th century and may well date back
to 5th century China. The 15th century Arabic mathematician Al-Kashi either learned
of this method from the Chinese, or earlier Arabs or rediscovered it. It is likely that
the 13th century Italian mathematician Fibbonacci knew this method, and he may have
learned it, as he learned learned much of his mathematics, from the Arabs. In any case
the French Mathematician Francois Viete definitely used the method in the year 1600.
As late as 1947, when J.V. Uspensky wrote hisTheory of Equations, Horner’s method
was considered the method of choice for finding real roots, especially for equations with
integer coefficients, as then this method could be done with only integer arithmetic and
could acheive tremendous accuracy. Today, however, this method has been replaced by
other methods more suited to the computer and we discuss this method primarily for its
historical interest.
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As done in Uspensky we discuss the method by example. For more information on
the arithmetic he used and details on this method as implemented in the 1940’s, consult
Uspensky’s book.

We will solve the polynomial equation

p(x) = x4 − 2x3 + x2 − 3 = 0.

The first step, which was done classically by the separation of roots methods, is to
locate the desired root between two integers. In this case we find a root between 1 and
2.

By Horner’s process we then expandp(x) in powers of(x− 1) to getp(x) = −3 +
(x−1)2+2(x−1)3+(x−1)4. We now make the substitutionx = 1+d/10 thinking ofd
as the next digit in the decimal expansion, sop(x) = −3+(d/10)2+2(d/10)3+(d/10)4.
Of course we want to findd so thatp(x) = 0, so multiplying through by10000 (not
necessary now, but done classically to avoid fractions) we must find a root of

p1(d) = −30000 + 100d2 + 20d3 + d4.

We are assured of a root between 0 and 10 so we again try integers. By calculation
p1(5) < 0, p1(7) < 0, p1(9) < 0 (but we knowp1(10) = p(2) > 0 so p1(d) has
a solution9 < d < 10. We now expandp1(d) in a Taylor’s series about 9 and get
p1(d) = −759 + 9576(d − 9) + 1126(d − 9)2 + 56(d − 9)3 + (d − 9)4. We now let
d = 9 + e/10, thinking of e as the next digit. In particular we havex = 1.9 + e/100.
Again clearing the denominator of fractions we see we must find a root of

p2(e) = −7590000 + 9576000e + 112600e2 + 560e3 + e4

but in this case, again by trial and error we see that the roote lies between 0 and 1. Thus
we sete = 0+f/10, thinking off as the next decimal digit so thatx = 1.90+f/1000.
Making the substitution, clearing fractions we must find a root of

p3(f) = −75900000000 + 9576000000f + 11260000f 2 + 5600f 3 + f 4.

Here we find that the root lies between 7 and 8 so we apply Horner’s process at
c = 8 and make the substitutionf = 7 + g/10 so that we must solve for a root of

p4(g) = −83143367990000 + 9734464572000g

+ 1137789400g2 + 56280g3 + g4
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This is as far as we want to go with this example, although we could, in principle,
go as far as we like. Summing up

x = 1 + d/10

= 1 + (9 + e/10)/10 = 1.9 + e/100

= 1.9 + (0 + f/10)/100 = 1.90 + f/1000

= 1.90 + (7 + g/10)/1000 = 1.907 + g/10000

so to solve forx to 4 significant digits we really only need to know ifg is more or less
than 5. We note that the last 3 terms are much smaller (by a factor of at least 100) than
the first two (rememberg < 10) so they will not affect the root ofp4 very much. Thus
it is enough to solve the linear equation

0 = −83143367990000 + 9734464572000g

whose solution is approximatelyg = 8.541134171 so we can be sure that to 4 signifi-
cant digitsx = 1.908. But in fact we could use our decimal estimate ofg to estimate
x = 1.907854113. It turns out that this is accurate to 6 significant digits, actually to 10
significant digitsx = 1.907853262.

If one wanted more accuracy, instead of dropping the last 3 terms ofp4(x), we
might only drop the last term. After several iterations of the cubic we would drop
another term and do several iterations with the quadratic. Finally we would drop the
quadratic term and solve the resulting linear equation. In principle, this method can
give any desired accuracy. For instance in Uspensky’s book there is a calculation of a
root by this method to 12 significant digits.

Maple Implementation

One can use the fact that MAPLE does exact integer arithmetic
to any accuracy to use Horner’s method. The following sequence of
MAPLE commands (output is supressed) will do the calculation of
the example above:

> p := -3 + xˆ2 -2*xˆ3 + xˆ4;
> taylor(",x=1,5);
> subs(x=1+d/10,");
> convert(",polynom);
> p1 := 10000*";
> taylor(p1,d=9,5);
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> subs(d=9+e/10,");
> convert(",polynom);
> p2 := 10000*";
> subs(e=f/10,p2);
> p3 := 10000*";
> taylor(p3,f=8,5);
> subs(f=7+g/10,");
> convert(",polynom);
> p4 := 10000*";
> g := evalf(tcoeff(p4,g)/coeff(p4,g,1));

Note that the procedure taylor returns the series data type so
the command convert(",polynom); is used to convert back to a
polynomial so the simplification procedures of MAPLE can be used.

Exercise 2.10.1[20 points, From Uspensky’s book] Use Horner’s method to solve
3x3 − 7x2 + 2x + 5 = 0 to 6 significant digits. Show your intermediate steps or
your MAPLE printout.

Exercise 2.10.2[20 points] Generally we think of the second derivative as a measure
of how “far from linear” a function is, but that only works when the first derivative is
of reasonable size. For large first derivative thecurvatureof a function atx0 can be
approximated by

κ =

∣∣∣∣2f ′′(x0)

f ′(x0)3

∣∣∣∣
Calculate the curvature atx0 = 0 for the polynomialsp1(d), p2(e), p3(f) andp4(g)
using this formula. What does this say about the approximate linearity of these polyno-
mials near 0? How does this help justify the approximation at the end of the method?

2.11 Iteration Method

The method of iteration is an important method in numerical analysis. It can be used to
solve polynomial as well as other equations. The methods we will be considering later
mostly fall under the category of iteration methods, so in this section we take a brief
look at the general method.

Let g be a real valued function of a real variable or a complex valued function of a
complex variable. A numberc is called afixed pointof g if g(c) = c.
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We will consider the following situation. Letx0 be a complex number, let

x1 = g(x0)

x2 = g(x1)

x3 = g(x2)
...

...

and so on, in generalxn+1 = g(xn).
There are 4 possibilities:

1. The sequence{xn} converges to a fixed point ofg(x).

2. The moduli of the numbers{xn} go to infinity.

3. The sequence{xn} orbitsaround a finite number of points.

4. We havechaos.

Possibility 3) means thatxn = xm for somen > m which then implies that
xj+n−m = xj for all j ≥ m. The last possibility is essentially “none of the above”,
we will discuss the last two possibilities further in Chapter 3. What we hope will hap-
pen, of course, is that possibility 1) will occur.

For example, letg(x) = (x2 + 2)/2x. Start with just about any real (or complex)
number forx0, sayx0 = 1. Thenx1 = g(x0) = .75, x2 = g(x1) = g(.75) = 1.70, x3 =
g(x2) = 1.4395325 and succeeding terms in the sequence are1.4144362, 1.4142136,
1.142136, 1.142136, . . . We see that this sequence has converged, in fact to

√
2. We

note that in this case it only took 5 iterations to reach the limit.
Another amusing example isg(x) =

√
x + 1. Starting with any positive initial

point the iteration sequence will converge to the golden mean(1 +
√

5)/2.
There are numerous theorems in mathematics which give conditions under which

the sequence{xn} will converge to a fixed point. We are interested in the following
general situation.

A fixed point c of g is called anattracting fixed point if g′(c) < 1. c is called a
repellingfixed point ifg′(c) > 1. For example,1/3 is a repelling fixed point ofg(x) =
10x−3 (we discussed this function briefly in§2.1). Repelling fixed points repellx away
from the fixed point. However ifc is an attracting fixed point, andx0 is chosen nearc
then{xn} will converge toc. This was the case in the exampleg(x) = (x2 + 2)/2x
above.
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To apply the fixed point iteration scheme to find the root of a polynomial we rewrite
the equationp(x) = 0 to the formx = g(x), and hope that the functiong has an
attracting fixed point. For instance ifp(x) = x3 +4x2 − 10 theng(x) = x is equivalent
to p(x) = 0 for the following functionsg:

g1(x) = x− x3 − 4x2 − 10

g2(x) =
√

10/x− 4x

g3(x) =
1

2

√
10− x3

g4(x) =

√
10

4 + x

g5(x) =
2x3 + 4x2 + 10

3x2 + 8x

Starting withx0 = 1.5 the first sequence goes to infinity, the second becomes unde-
fined (a negative number inside the square root), but the last 3 converge to the root of
p(x) in 30, 15 and 4 iterations respectively.

One final comment on fixed point iteration. Suppose for a given functiong(x) and
intitial point x0 the sequence{xn} converges to an attracting fixed pointc. Even if
in actual computation thexn are not calculated accurately, the slightly erroneousxn

will also be attracted toc. Thus fixed point iteration is to a large extent self correcting
in terms of numerical error. Thus this method is highly accurate numerically, when it
works at all.

Maple Implementation

The most convenient way to do iteration in MAPLE is to define g
as an arrow procedure, for example to implement iteration with the
example g4(x) =

√
10/(4 + x) above you would give the commands

g := x -> sqrt(10/(4+x));
g(1.5);
g(");
g(");

.

.

.

One can also use a for .. od loop as follows
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g := x -> evalf(sqrt(10/(4+x)));
x := 1.5;
for j to 10 do x := g(x); od;

Note the use of evalf . This is important to remember in doing
MAPLE iteration as MAPLE tries to use exact expressions as possi-
ble. Iterating exact expressions is very time consuming and uses up
much memory and gives a very large output. To see this start with
x = 3/2 in the first version of iteration above. Also, be very care-
ful not to start your iteration with a unassigned variable or algebraic
expression.


