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1.8 Greatest Common Divisor

It would be easy, and not actually incorrect, to define the greatest common divisor
of two polynomialsp(x), f(x) as a polynomialg(x) of greatest degree which divides
bothp(x) andf(x). However simple, such a definition loses the essence of the notion
of greatest common divisor; hence we go for a more complicated definition, but one
which will bring important dividends later.

Definition 1.8.1 g(x) is a greatest common divisor ofp(x), f(x) if

i) g(x) divides bothp(x) andf(x).

ii) If h(x) is another polynomial which divides bothp(x) andf(x), thenh(x) di-
videsg(x).

We writeg(x) = gcd(p(x), f(x)). The essential idea here is not thatg(x) is greatest
in degree (which it is) but thatg(x) is greatest in terms of the relation “divides.” One
other point needs to be made at this time regarding the definition. Note that we said
“g(x) is a greatest . . . ” not “g(x) isthegreatest . . . .” This is an important distinction; the
gcd is not unique, there are many of them. For instance, given a gcdg(x) and a constant
c 6= 0, thencg(x) is also a gcd. While this makes things a bit more complicated, it does
give us some more flexibility. In particular, ifgcd(f(x), g(x)) = c wherec 6= 0 is a
constant, we usually saygcd(f(x), g(x)) = 1.

We now come to our theorem asserting existence of a gcd, and not only can we
show that we can satisfy the condition in the definition, but in fact we have even more
information aboutg(x). This theorem is fairly technical and abstract, but it is very
important, so we must prove it.

Theorem 1.8.2 Given polynomials p(x), f(x) then a greatest common divisorg(x) ex-
ists and is unique up to multiplication by a non-zero constant. Furthermore, there exist
polynomialsu(x) andv(x) so that

g(x) = u(x) ∗ p(x) + v(x) ∗ f(x)

Proof: We consider the set of non-zero polynomials of the formu(x) ∗ p(x) + v(x) ∗
f(x) asu(x), v(x) range over all polynomials. We pickg(x) to be a polynomial of
this form of lowest degree. By the division theorem,p(x) = g(x) ∗ q(x) + r(x) where
deg r(x) < deg g(x). Then r(x) = p(x) − g(x) ∗ q(x) = p(x) − [u(x) ∗ p(x) +
v(x)f(x)]∗q(x) = (1−u(x)∗q(x))∗p(x)+v(x)∗q(x)∗f(x). Sinceg(x) had smallest
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degree among all such non-zero polynomials,r(x) = 0 and thusg(x)|p(x). Likewise
g(x)|f(x). If h(x)|p(x) andh(x)|f(x) thenp(x) = h(x) ∗ a(x), f(x) = h(x) ∗ b(x) so
g(x) = u(x) ∗ a(x) ∗ h(x) + v(x) ∗ b(x) ∗ h(x) = (u(x) ∗ a(x) + v(x) ∗ b(x)) ∗ h(x)
soh(x)|g(x). The uniqueness part is left as an exercise.

While this is a slick proof and establishes important properties of the gcd, it does
not give one any help in actually finding a gcd – it is impractical to actually construct all
polynomials of that form and look for a smallest one. Once again we have an algorithm,
this one modelled on one used by Euclid to find the gcd of two line segments of integer
length. First we prove a lemma.

Lemma 1.8.3 Supposep(x) = f(x)q(x) + r(x) then

gcd(p(x), f(x)) = gcd(f(x), r(x))

Proof: Let g(x) = gcd(f(x), p(x)) andh(x) = gcd(f(x), r(x)) where the= sign is
taken with a grain of salt since gcds are not unique. Theng(x)|f(x) but sincer(x) =
p(x)−f(x)q(x) it is easily seen thatg(x)|r(x). But by definition ofgcd(f(x), r(x)) we
see thatg(x)|h(x). Likewiseh(x)|g(x). It follows from Theorem 1.5.1 thatdeg g(x) =
deg h(x) and thus, sinceg(x)|h(x) that they are constant multiples of each other. But
gcds are only defined up to constant multiple.

EUCLIDEAN ALGORITHM: Given polynomialsp(x), f(x) we apply the division
algorithm repeatedly as follows:

p(x) = f(x) ∗ q1(x) + r1(x) deg r1(x) < deg f(x)

f(x) = r1(x) ∗ q2(x) + r2(x) deg r2(x) < degr1(x)

r1(x) = r2(x) ∗ q3(x) + r3(x) deg r3(x) < degr2(x)
...

...

rk−2(x) = rk−1(x) ∗ qk(x) + rk(x) deg rk(x) < deg rk−1(x)

rk−1(x) = rk(x) ∗ qk(x) + rk+1(x) rk+1(x) = 0

where eventuallyrj(x) = 0 since the degrees of therj(x) cannot continue to decrease
indefinitely, the degrees being non-negative integers. By the Lemma,gcd(p(x), f(x)) =
gcd(f(x), r1(x)) = gcd(r1(x), r2(x)) = · · · = gcd(rk−1(x), rk(x)) = gcd(rk(x), 0) =
rk(x).

The extended version of the Euclidean Algorithm goes like this: For simplicity we
drop the(x), i.e., writef instead off(x), etc. Definer−1 = p, u0 = 1, v0 = 0 and
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r0 = f, u1 = 0, v1 = 1 and forn > 1 definern−1, un, vn recursively by settingqn to be
the quotient after dividingrn−3 by rn−2 and

rn−1 = rn−3 − qnrn−2

un = un−2 − qnun−1

vn = vn−2 − qnvn−1

An easy induction argument shows that for eachn > 1 thatgcd(p, f) = gcd(rn−1, rn)
and

unp + vnf = rn−1

Thus if rk(x) is the last non-zero remainder

uk+1(x)p(x) + vk+1(x)f(x) = rk(x) = gcd(p(x), f(x))

Exercise 1.8.1Once in each person’s life one should calculate a greatest common
divisor of two polynomials by hand, just so one appreciates the existence of com-
puter programs to do this chore. Letp(x) = x4 + x3 − 2x2 + 17x − 5 andf(x) =
x4 − 3x3 + 8x2 − 7x + 5. Find a greatest common divisor with integer coefficients;
better yet, write this gcd in the formu(x)p(x) + v(x)f(x).

The constant polynomial 1 (or any other non-zero constant polynomial, for that
matter) divides any polynomial; thus if there is no common divisor of positive degree,
1 is a gcd. In this case we say thatp(x), f(x) are “relatively prime.”

Maple Implementation

g := gcd(p,f); will give the gcd of polynomials p,f de-
fined in the usual Maple fashion. If you need u(x), v(x) you can use
the extended gcd by gcdex(p,f,x,’u’,’v’); where p,f are
the polynomials, x is the variable and ’u’, ’v’ are the names of
the variables, enclosed in single quotes, which will evaluate to the
desired u(x), v(x).

1.9 Unique factorization

Definition 1.9.1 A polynomialp(x) is calledirreducible if it cannot be factored as the
product of two polynomials of smaller degree.
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Every polynomial of degree 0 or 1 is irreducible. A polynomialp(x) ∈ R[x] of
degree 2 is irreducible if and only if it has no real roots, however no polynomial of
degree 2 (or higher, if we accept the Fundamental Theorem) inC[x] is irreducible.
Thus the irreducibility of a polynomial depends on the coefficient field we are using.

For technical reasons which will become more apparent in Chapter 5 we use the
wordprimeto convey a slightly different meaning than “irreducible.”

Definition 1.9.2 A polynomialp(x) is calledprimeif p(x) does not divide 1 and when-
everp(x)|f(x) ∗ h(x) then eitherp(x)|f(x) or p(x)|h(x).

The technical condition “p(x) does not divide 1” will be needed in Chapter 5; for
now you should substitute the equivalent phrase “deg p(x) ≥ 1”.

Theorem 1.9.3 Letp(x) be a polynomial inR[x] or C[x] of degree 1 or greater. Then
p(x) is prime if and only ifp(x) is irreducible.

Proof: If p(x) is prime it is easy to see that it is irreducible. Conversely, ifp(x) is irre-
ducible andp(x)|f(x)∗h(x) supposep(x) does not dividef(x). Letgcd(p(x), f(x)) =
g(x). Sincep(x) is irreducible,g(x) has degree 0 ordeg p(x). The second case
is impossible (why – this is important!) thus we may takeg(x) = 1. By The-
orem 1.8.2 there areu(x), v(x) with 1 = u(x) ∗ p(x) + v(x) ∗ f(x) so h(x) =
h(x) ∗ u(x) ∗ p(x) + v(x) ∗ f(x) ∗ h(x). But asp(x)|f(x) ∗ h(x), p(x) divides both
terms of this last expression, hencep(x)|h(x).

That last proof was surprisingly hard, but it is the key step in the proof of

Theorem 1.9.4 (Unique Factorization Theorem)Any polynomial of degree greater
or equal to 1 inR[x] or C[x] can be factored as a product of irreducible polynomials.
The factors in different factorizations differ only as to order, constant multiples and
constants.

Example 1.9.5 If p(x) = 3x2 +3x− 6 thenp(x) may be factored as(3x− 3) ∗ (x+2)
or (x− 1) ∗ (3x + 6) or 3(x− 1) ∗ (x + 2) or−3 ∗ (ix + 2i) ∗ (ix− i) etc.

Sketch of proof: The existence of a factorization follows easily by induction on the
degree and the definition ofirreducible. The uniqueness assertion depends on the fact
that the factors areprime. So if we have two different factorizations, each non-constant
factor of the one divides some factor of the other. But since the factors areirreducible
that factor of the first factorization must differ by the corresponding factor of the other
by only a constant multiple.
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Although the flexibility in factoring allowed by Theorem 1.9.4 may be useful in
some situations, we often want to cut down the number of possible factorizations.

Definition 1.9.6 A polynomialp(x) = a0 + a1x + a2x
2 + · · · + anx

n of degreen is
calledmonicif an = 1.

It is clear (because of division of numbers) that any non-zero polynomial is a con-
stant multiple of a monic polynomial. Thus Theorem 1.9.4 can be phrased as

Theorem 1.9.7 Any polynomial of degree≥ 1 in R[x] or C[x] can be factored as
a product of monic irreducible polynomials multiplied by a constant. Any two such
factorizations differ only by the order of the factors.

We note that so far in this section we have not required the use of the Fundamental
Theorem of Algebra, in fact we have used only the “field” properties ofR andC.
Thus, Theorems 1.9.4 and 1.9.7 hold even if we restrict our coefficients (in both the
polynomial to be factored and the factors) to rational numbers but, as we will see in
Chapter 5, the irreducibles may be of any degree. However, assuming the Fundamental
Theorem and allowing the coefficients of the factors to be inC or R gives particularly
simple factorizations.

Theorem 1.9.8 Letp(x) ∈ C[x] of degreen ≥ 1. Thenp(x) = c(x− α1) ∗ (x− α2) ∗
· · · ∗ (x − αn) wherec ∈ C andα1, α2, . . . , αn are the complex roots ofp(x) counted
according to multiplicity.

Before looking at factorizations overR we need to make a few comments. First, a
degree 2 polynomial (called a quadratic)ax2 + bx + c is factorable inR[x] if and only
if its roots are real, i.e. by the quadratic formula if and only ifb2 − 4ac ≥ 0. If p(x)
is a real polynomial andα is an imaginary root,p(α) = 0. But thenp(ᾱ) = p(α) =
0̄ = 0 by the properties of conjugation we discussed in§1.3 soᾱ is the other root.
Combining the factors(x − α), (x − ᾱ) of the factorization of Theorem 1.9.8 shows
that(x−α)∗ (x− ᾱ) = x2−2Re(α)x+ |α|2 is a real factor ofp(x). All the imaginary
roots pair up like this so we have

Theorem 1.9.9 (D’Alembert’s Theorem) Every real polynomial can be factored as
a product of monic real linear (degree 1) polynomials times a product of real monic
irreducible quadratics times a real constant. This factorization is unique except for the
order of the factors.
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Example 1.9.10Let p(x) = x3 − 2. As a rational polynomialp(x) is irreducible, as
a real polynomialp(x) factors as(x − 3

√
2) ∗ (x2 + 3

√
2x + 3

√
4) while as a complex

polynomialp(x) factors as

p(x) = (x− 3
√

2) ∗ (x− 3
√

2
1 +

√
3i

2
) ∗ (x− 3

√
2
1−

√
3i

2
)

One consequence of this, which also can be proven directly by use of the Interme-
diate Value Theorem of Calculus, is

Theorem 1.9.11Every real polynomial of odd degree has at least one real root.

Maple Implementation

To do the kind of factoring discussed in this section use Maple’s
factor(f, real); or factor(f, complex); Important: if

f is a Maple polynomial with integer or rational coefficients, the
Maple function factor(f); without specifying rea or complex,
will factor f into a product of polynomials with integer or rational
coefficients. This is a completely different situation than we have
been discussing here; a full discussion of this kind of factorization
can be found in Chapter 5.

1.10 Formal Differentiation of Polynomials

Around 1680 Isaac Newton and Gottfried Leibniz invented the differential and integral
calculus more or less independently. Both assumed that all functions could be expressed
as power series which, since the notion of convergence hadn’t yet been developed, were
treated simply as big polynomials. We now know that this is not accurate, however
many functions can be approximated by polynomials.

Interpreting Newton and Leibniz from a modern point of view, Newton defined
for each polynomial a derivative polynomial as follows: givenp(x) we consider the
function

F (x, h) =
p(x + h)− p(x)

h

whereh is a second variable. Applying the Binomial Theorem to each term ofp(x+h)
in the numerator we see thatF (x, h) is actually a polynomial inx andh. Thus Newton
definedp′(x) = F (x, 0) (although he didn’t use this notation, of course). Leibniz did
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not give an algebraic description of the derivative but rather gave rules for finding the
differentialdp of a polynomialp(x). The derivative is thenp′(x) = dp/dx. Leibniz’s
rules (which are actually still called the Leibniz Rules today) include

dc = 0 (c a constant)

d(p + q) = dp + dq

d(cp) = cdp (c a constant)

d(pq) = pdq + qdp

dxn = nxn−1dx

It can be easily shown that Newton’s construction satisfies Leibniz’s rules and therefore
both give the same derivative function. In fact, ifp(x) = a0 + a1x + a2x

2 + · · ·+ anx
n

thenp′(x) = a1 + 2a2x + 3a3x
2 + · · · + nanx

n−1. This rule works for both real and
complex (or even rational) polynomials. In the complex (and rational) case we should
interpret this algebraically as Newton and Leibniz did and forget calculus for the time
being. The derivativep′(x) of a polynomialp(x) is also a polynomial and so has itself
a derivativep′′(x) which in turn has a derivativep′′′(x) = p(3)(x) and so on. Each
differentiation lowers the degree by one so ifdeg p(x) = n thenp(n)(x) is a constant
andp(k)(x) = 0 for k > n. In the next chapter we will give a powerful calculating
technique called Horner’s process for calculating derivatives at a point. It is based on
the following simple theorem:

Theorem 1.10.1Let p(x) be a (rational, real or complex) polynomial,c a complex
number. By the Remainder theoremp(x) = (x− c) ∗ q(x) + p(c). Thenp′(c) = q(c).

Maple Implementation

To find the formal derivative of a polynomial f(x)
use diff(f, x) . To evaluate at a point c use

subs(x=c, diff(f,x));

1.11 Test for multiple roots

Theorem 1.11.1Let p(x) be a polynomial,c a complex root ofp(x). Thenc has mul-
tiplicity greater than 1 if and only ifp′(c) = 0.
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Proof Sincec is a root, by the Factor Theorem,p(x) = (x − c) ∗ q(x), as a complex
polynomial. By Theorem 1.10.1,p′(c) = q(c) so p′(c) = 0 if and only if c is a root
of q(x), i.e., if and only if (x − c) is a factor ofq(x). But this is what is meant by
multiplicity greater than 1.

An induction argument can be used to show that c is a root of multiplicitym if and
only if p(c) = p′(c) = · · · = p(m−1)(c) = 0 butp(m)(c) 6= 0.

A useful fact is that we can test to see if a polynomial has multiple roots without
knowing what the roots are.

Theorem 1.11.2 (Multiple root test) The non-constant polynomialp(x) has no com-
plex multiple roots if and only ifgcd(p(x), p′(x)) = 1.

Proof Let gcd(p(x), p′(x)) = g(x). If g(x) 6= 1 thendeg g(x) ≥ 1 so g(x) has a
complex rootc (here we are assuming the Fundamental Theorem). Sinceg(x)|p(x) and
g(x)|p′(x) we see thatc is a root ofp(x) andp′(x) and thus by 1.11.1c is a multiple
root ofp(x).

For the converse, note thatg(x) = u(x) ∗ p(x) + v(x) ∗ p′(x) for some polynomials
u(x), v(x). Thus if c is a multiple root ofp(x), by 1.11.1p(c) = p′(c) = 0 sog(c) = 0.
But theng(x) is not the constant 1.

In the complex case this theorem is innocent enough and in fact could be easily
proven directly from Theorem 1.9.8. In fact, we see from the factorization ofp(x) that
if α1, α2, . . . , αk are the multiple roots ofp(x) with αj having multiplicitymj > 1 then
gcd(p(x), p′(x)) is the product of the(x− αj) raised to themj − 1 power.

However whenp(x) is a real (or rational) polynomial, Theorem 1.11.2 hints at some
of the deepest properties of roots. For ifp(x) is real (or rational) then so isp′(x) and by
the Euclidean Algorithm, so isg(x) = gcd(p(x), p′(x)). But by unique factorization,
g(x) is a product of irreducible factors ofp(x). We thus get the following amazing
result:

Theorem 1.11.3Letp(x) be a real (or rational) polynomial andf(x) be an irreducible
factor. If one rootc of f(x) has multiplicitym as a root ofp(x) then every root off(x)
has multiplicitym as a root ofp(x). Further, if p(x) is itself irreducible overR (or
over the rationals) thenp(x) does not have multiple roots.
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1.12 Partial Fraction Decomposition

In this optional section we give a proof of the theorem guaranteeing partial fraction
expansion for polynomials over the reals. The main application for this is to do closed
form integration of rational functions. It was towards this end that D’Alembert pur-
sued his version of the Fundamental Theorem of Algebra. In modern mathematics par-
tial fraction decomposition is more likely to be used in combinatorial analysis where
“generating functions” are obtained by finding “formal power series” representation of
rational functions.

Both of the above applications require knowing theexact rather than numerical
factorization of a polynomial; thus we must treat seriously the possibility of multiple
roots and factors.

Theorem 1.12.1 (Partial Fractions Decomposition)Let f(x)
g(x)

be a rational
function wheref(x), g(x) are polynomials overR, and supposedeg f(x) < deg g(x).
Suppose overR g(x) factors into irreducible factors (we can assumeg(x) is monic) as

g(x) = (x− a1)
e1(x− a2)

e2 · · · (x− ak)
ek(x2 + b1x + c1)

d1 · · · (x2 + bmx + cm)dm

Thenf(x)
g(x)

is the sum of rational functions of the form

Aij

(x− ai)j

wherei = 1, . . . , k, j = 1, . . . , ei, Aij ∈ R and of the form

Bijx + Cij

(x2 + bix + ci)j

wherei = 1, . . . ,m, andj = 1, . . . , dj.

The restriction thatdeg f(x) < deg g(x) is not signficant because otherwise using
the division algorithm we can dividef(x) by g(x) and get a polynomial plus a rational
function of the right type. Thus a more general form of Partial Fractions Decomposition
would say that any rational function is a polynomial plus a sum of rational functions of
the type

A

(x− a)j
and

Bx + C

(x2 + bx + c)j

Intuitively, the Partial Fractions Decomposition theorem is clear. If we write our ra-
tional function as a formal sum of rational functions of the type above and then multiply



30

both sides of the equation byg(x), we have a polynomial equation where the left-hand
side has degree less than or equal ton− 1 wheredeg g(x) = n and the right-hand side
has degree exactlyn − 1. Moreover, the coefficients on the left hand side are linear
combinations of theAij, Bij andCij. There are exactlyn of these coefficients so equat-
ing the coefficients ofxi, i = 0 . . . n− 1 on both sides of the equation gives a system of
n equations inn unknowns. In practice, we solve this system to find the coeffiecients
of the Partial Fractions Decomposition. Unfortunately it is not obvious that this system
is non-singular, so we will need a different proof.

Example 1.12.2We consider the partial fraction decomposition of

Q(x) =
x5 − 6 x + 9

( x− 3 )3 ( x2 + 3 x + 5 )2

We wish to write this in the form

A1

x− 3
+

A2

( x− 3 )2
+

A3

( x− 3 )3
+

B1 x + C1

x2 + 3 x + 5
+

B2 x + C2

( x2 + 3 x + 5 )2

We setQ(x) equal to this and multiply both sides by the denominator ofQ(x) to get

x5 − 6 x + 9 = ( B1 + A1 ) x6 + ( A2 + C1 − 6 B1 ) x5

+ ( A3 − 8 A1 + 3 A2 − 6 C1 + B2 + 5 B1 ) x4

+ ( A2 + 6 A3 − 30 A1 + C2 + 9 B1 + 5 C1 − 9 B2 ) x3

+ (−9 C2 − 27 A2 + 9 C1 + 27 B2 + 19 A3 + 54 B1 + 16 A1 ) x2

+ (−135 B1 − 27 B2 − 65 A2 + 54 C1 + 27 C2 + 120 A1 + 30 A3 ) x

+ 25 A3 − 135 C1 + 225 A1 − 75 A2 − 27 C2

Now setting the coefficients ofxi equal on both sides of the equation we get the
seven linear equations in seven unknowns

B1 + A1 = 0

A2 + C1 − 6 B1 = 1

A3 − 8 A1 + 3 A2 − 6 C1 + B2 + 5 B1 = 0

A2 + 6 A3 − 30 A1 + C2 + 9 B1 + 5 C1 − 9 B2 = 0

−9 C2 − 27 A2 + 9 C1 + 27 B2 + 19 A3 + 54 B1 + 16 A1 = 0

−135 B1 − 27 B2 − 65 A2 + 54 C1 + 27 C2 + 120 A1 + 30 A3 = −6

25 A3 − 135 C1 + 225 A1 − 75 A2 − 27 C2 = 9
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These can be solved by your favorite linear equation solution method, but we recom-
mend MAPLE’ssolve to get solutions represented as fractions. Thus

Q(x) =
23742

279841

1

x− 3
+

4965

12167

1

( x− 3 )2
+

234

529

1

( x− 3 )3

+
− 23742

279841
x + 23194

279841

x2 + 3 x + 5
+
− 807

12167
x− 9304

12167

( x2 + 3 x + 5 )2
(1.1)

Of course, one could simply use MAPLE’sconvert(Q,parfrac,x,true) to
get the same result directly.

To prove the partial fraction decomposition we first consider the case whereQ(x) =
f(x)

p(x)(q(x)
wherep(x), q(x) are relatively prime. Then by Theorem 1.8.2 there exist poly-

nomialsu(x), v(x) with
u(x)p(x) + v(x)q(x) = 1

We then have

Q(x) =
f(x)

p(x)q(x)
=

f(x)(u(x)p(x) + v(x)q(x)

p(x)q(x)
=

f(x)u(x)

q(x)
+

f(x)v(x)

p(x)

Continuing in this manner we writeQ(x) as a sum of rational functions where the
denominators can not be factored into relatively prime factors, i.e. the denominators
are powers of an irreducible polynomial.

Now assume we have a rational function of the formf(x)
p(x)m wherep(x) is irreducible.

What we do is to dividef(x) by p(x) to get

f(x) = q0(x)p(x) + r0(x)

then divideq0(x) by p(x) to get

q0(x) = q1(x)p(x) + r1(x)

and so on until we get

...

qm−2(x) = qm−1(x)p(x) + rm−1(x)

Putting these together we have

f(x) = p(x)mqm−1(x) + p(x)m−1rm−1(x) + · · ·+ p(x)r1(x) + r0(x)
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so dividing byp(x)m we have the proper form

f(x)

p(x)m
= qm−1(x) +

rm−1(x)

p(x)
+ · · ·+ r1(x)

p(x)m−1
+

r0(x)

p(x)m

where the first term is a polynomial and all the numerators have degree less than that of
p(x).

Thus we have a two-step procedure for partial fraction decomposition. In step 1 we
break up our rational function as a sum of rational fuctions where the denominators are
powers of distinct irreducible polynomials. Step 2 writes each summand as a sum of
a polynomial and fractions of the formr(x)

p(x)j wheredeg r(x) < deg p(x) andp(x) was
our irreducible. Adding these expressions and combining the polynomial parts gives
our final partial fraction decomposition. The reader should note that even though our
original polynomial may have had numerator smaller than denominator, the summands
in step 1 may not and the polynomial parts in step 2 may be non-zero. What must
happen in this case is that the polynomial parts from each summand of step 1 must
cancel off.

Example 1.12.3Consider

Q(x) =
x5 − 6 x + 9

( x− 3 )3 ( x2 + 3 x + 5 )2

of the earlier example. Writingp = p(x) = x − 3 andq = q(x) = x2 + 3x + 5 so
thatQ = f

p3q2 . Sincegcd(p3, q2) = 1 it follows that there exist polynomialsa, b so that
a ∗ p3 + b ∗ q2 = 1. In fact by the Euclidean Algorithm we have

a = − 201 x

12167
− 7083

279841
− 197 x3

279841
− 1359 x2

279841

b =
3544

279841
+

197 x2

279841
− 1596 x

279841

Thus

Q =
f

p3q2
=

f(ap3 + bq2)

p3q2
=

fb

p3
+

fa

q2

=
197 x7

279841
− 1596 x6

279841
+ 3544 x5

279841
− 1182 x3

279841
+ 11349 x2

279841
− 35628 x

279841
+ 31896

279841

(x− 3)3

+
197 x7

279841
− 1596 x6

279841
+ 3544 x5

279841
− 1182 x3

279841
+ 11349 x2

279841
− 35628 x

279841
+ 31896

279841

(x2 + 3x + 5)2
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Next we writefb = p3r3 +p2r2 +pr1 + r0 wherer0, r1, r3 are of degree less thanp,
i.e. are constants. This is done by dividingfb by p, then dividing the quotient byp and
the next quotient byp with r0, r1, r2 the successive remainders andr3 the last quotient.
We get

r0 =
234

529

r1 =
4965

12167

r2 =
23742

279841

r3 =
197 x4

279841
+

177 x3

279841
− 182 x2

279841
− 1098 x

279841
− 1371

279841

Likewise we writefa = q2s2 + qs1 + s0 wheres0, s1 are the successive remainders
on dividing firstfa by q and then the quotient of the first division byq ands2 is the
quotient of the second division. We have

s0 = − 807 x

12167
− 9304

12167

s1 = −23742 x

279841
+

23194

279841

s2 = − 197 x4

279841
− 177 x3

279841
+

182 x2

279841
+

1098 x

279841
+

1371

279841

What we notice is that when we addfb
p3 to fa

q2 thenr3 ands2 cancel out and we are left
with precisely the formula of equation (1.1).

1.13 The Resultant

No book on Theory of Equations would be complete without at least mentioning the
resultantof two polynomials. In this optional section we will do just that, mention the
resultant. We will let the reader look up the details in a classical Theory of Equations
text or in a good algebra book such as the one by S. Lang.

The problem is to decide if two polynomialsf(x), g(x) have a common root. In
practice, if the coefficients of the polynomials are given numbers, the easiest way to
solve this problem is to use a numerical algorithm to find the complex roots of the poly-
nomials and see if any are the same. For example the procedurefsolve of MAPLE
will work. If it appears that the two polynomials have the same root but you are not sure
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then you could compute the greatest common divisorh(x) = gcd(f(x), g(x)). If h(x)
is not a constant then the roots ofh(x) are the common roots. However, in some theo-
retical situations (for instance the coefficients may not be explicit numbers) a different
criterion may be helpful. One then uses the resultant.

Letf = f(x) = v0x
n+v1x

n−1+· · ·+vn−1x+vn andg = g(x) = w0x
m+w1x

m−1+
· · ·+wm be two polynomials. Note that we are writing them in a nonstandard way, e.g.
the leading coefficient isv0 and the constant coefficient isvn for a polynomial of degree
n. We now form am + n × m + n matrix M as follows: place the coefficients off ,
starting with the leading termv0 in the first row starting in the first column. Put zeros
in the lastm−1 places. In the second row we again place the coefficients off , but now
starting with 0 in the first column andv0 in the second,vn in then + 1st column and
zeros in the lastm− 2 columns. Continue in this manner for the firstm rows, each one
starting one column later. Themth row hasvn in the last column. Then starting with
them + 1st column we place the coefficients ofg with w0 in the first column through
wm in them+1st column and zeros later. Continue the pattern down to the last row and
wm will appear in the last row, last column. For example, iff = v0x

3 +v1x
2 +v2x+v3

andg = w0x
2 + w1x + w2 thenM looks like

M =


v0 v1 v2 v3 0
0 v0 v1 v2 v3

w0 w1 w2 0 0
0 w0 w1 w2 0
0 0 w0 w1 w2


Theresultantof f andg is R(f, g) = det M , that is, the determinant of the matrixM .
Note that the resultant is a number, not a polynomial.

In practice the best way to calculate the resultant is to use Maple. There is a pro-
cedureresultant with syntaxresultant(f,g,x) to find the resultant of two
polynomials with variablex. The coeffients off, g can be numbers or variables or
expressions.

We state the main theorem about resultants:

Theorem 1.13.1Letf, g be two real or complex polynomials. ThenR(f, g) = 0 if and
only if f andg have a common complex root.

Actually, the idea of the proof is not too difficult and we will sketch it. First we
need a refinement of Theorem 1.8.2.

Lemma 1.13.2 Leth = gcd(f, g), then there exist polynomialsu, s with uf + sg = h
with deg u < deg g anddeg v < deg f . u, s are unique if and only ifh is a constant,
i.e.f, g are relatively prime.
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Proof: By 1.8.2 there existu, s with uf+sg = h. We need to show that we have the
appropriate degrees. For example ifdeg u ≥ deg g thenu = gq+r wheredeg r < deg g
by the division algorithm, soh = uf + sg = (gq + r)f + sg = rf + (gq + s)g. But
then(gq + s)g = h − rf sodeg g + deg(gq + s) = deg(gq + s)g = deg(h − rf) ≤
max(deg h, deg rf) = deg rf = deg r + deg f < deg g + deg f from which it follows
thatdeg(gq + s) < deg f .

It is easy to see thatu, s are unique if and only if the only solution touf + sg = 0
with u, s of appropriate degrees isu = 0, s = 0. If f, g are relatively prime (i.e.h is
a constant) the equationuf = −sg requiresg to divide u andf to divide−s by an
argument similar to that of Theorem 1.9.3 (or use the Unique Factorization Theorem).
But this would violate the conditiondeg u < deg f etc. If h is not a constant then
f = f1 ∗ h, g = g1 ∗ h wheredeg f1 < deg f anddeg g1 < deg g. But theng1f =
g1f1h = f1g sog1f + (−f1)g = 0 showing non-uniqueness.

We now return to the proof of the theorem. The idea is to let the coefficients of
u, s be unknowns and solve for them. So letu = a0x

m−1 + a1x
m−2 + · · · + am−1

ands = b0x
n−1 + · · · + bn−1. Form the expressionuf + sg and collect powers ofx,

note that each coefficient is a linear expression in theai, bj with coefficients thevi, wj

so to findu, s we can solve thesen + m linear equations in then + m unknowns
a0, . . . , am−1, b0, . . . , bn−1. It turns out that the matrix of this system is exactly the
transpose ofM . If f, g have no common roots thengcd(f, g) = 1 so the system has
a unique solution, and hence the determinant of the system (i.e.det M ) cannot be 0.
Conversely, iff, g have common roots sogcd(f, g) is not constant and the equation
gcd(f, g) = uf + sg has many solutions foru, s of the given degrees so the system is
singular and thus has determinant 0.

In the caseg(x) = f ′(x) then we have from 1.11.2

Corollary 1.13.3 Letf ′ be the derivative off . Thenf has roots of multiplicity greater
than 1 if and only ifR(f, f ′) = 0.

Finally we mention that iff(x) = xm + · · · is monic then the numberR(f, f ′) is
called thediscriminantof f . We will meet up again with the discriminant in Chapter
4. For example letf = x3 + px + q. Then one can easily compute (eg. via Maple)
thatR(f, f ′) = −4p3 − 27q2 which is exactly the discriminant that we will calculate in
section 4.8.


