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1 Modular Arithmetic

Modular arithmetic was first explicitly given by Gauss in 1801 in his famous book
Disquisitiones Arithmeticaeshere he was studying the cyclotomic polynomial- 1.
In 1829 Galois showed the importance of finite fields in understanding polynomial
equations. As we will see, modular arithmetic plays a particularly important role in the
study of factoring.
Letn be a fixed integer, > 1. Two integersz, b are said to beongruent modulo
n if the differences — b is divisible byn, we write thisa = b (mod n). Alternatively,
the Division Algorithm forZ says that giverm € Z andn > 1 there exist a unique
guotientq and remainder with a = ng + r with 0 < r < n. Given integers, b write
a =nqg+randb = ng + s, thena = b (mod n) ifand only if r = s, i.e. two numbers
are congruent if and only if they have the same remainder after divisian Npte that
if n =2,a =0 (mod n) says that either both, b are even or both, b are odd. Thus
congruence modula is a generalization of the idea of “even” or “odd”.
Congruence modulo n is aguivalence relatiorthat is, a weak type of equality. In
particular we have
1) a=a (mod n)foralla (reflexivity)
2) ifa=0b (mod n)thenb=a (mod n) (symmetry)
3) ifa=bandb=c (mod n)thena =c (mod n) (transitivity)
One can easily prove thatif= b (mod n) andc = d (mod n) then

a+c = b+d (modn) (1)
ac = bd (mod n) (2)

from which it follows that

a—c = b—d (modn)
a* = b (modn)ifk>0

In particular the relation of congruence respects all arithmetic operations. For ex-
ample if we havef () = ag+a1x+- - -+a,2™, ¢ € Z and we wish to find the remainder
of f(c) after division byn we can do all arithmetic and then divide hyand take the
remainder, we can divideby n and take the remainder before doing the arithmetic, or
we can divide by: and take the remainder after each step.

For fixedn anda € Z we denote byja] = {b € Z|a = b (mod n)}, i.e.[a] is
the set of all integers which have the same remainder after divisiom &ya. For
example ifn = 5then[3] = {...,—12,—7,—-2,3,813,18,...}. Orif n = 2 then
0] = [2] = [4] = [-6] = - - is the set of even integers afild = [3] = [-5] = --- IS
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the set of odd integerdq] is called thecongruence classf a modulon. For a given
n the congruence classgg, [1],.. ., [n — 1] partition Z, i.e., each integer is in one of
these congruence classes and no integer is in more than ane. dig + r,0 < r <n
thena € [r] and[a] = [r]. More generally,

a=b (mod n)ifand only if [a] = [b].

Thus the congruence classes allow us to trageivalenceof integers forequality of
classes.

Equation 1 and Equation 2 above can be restated as saying [thatifb] and|c] =
[d] then[a + ¢] = [b+d] and[ac] = [bd]. Thus|a] + [b] = [a+b] and[a] * [b] = [ab] give
well defined operations of addition and multiplication on the set of congruence classes
modulon. It is easy to check that from Equations 1 and 2 the commutative, associative
and distributive laws o¥. hold for congruence classes. Furth@r+ [a] = [0+ a] = [d]
and[1]x[a] = [1*a] = [a], SO[0], [1] are the zero and the multiplicative identity. Finally

la] + [—a] = [0] so we have additive inverses and can writle] = [—a]. Thus laws
C1, C2 as well as R1 - R8 hold for this modular arithmetic.
Thus we writeZ,, = {[0], [1], ..., [n—1]} and call this set theng of integers modulo

n, as we have a ring in the sensesdf1. (Many books use the notati@h), to mean
something else, a more standard notation for the ring of integers madsl@ /nZ.)

Z, is an arithmetic witm elements. Unfortunatelg,, in general does not even satisfy
the integral domain axiom I1 in general, for instance i 6 then[2] « [3] = [6] = [0]
but neither[2] = [0] nor [3] = [0]. However Gauss discovered the following wonderful
fact:

Theorem 1.1 Letp be a prime number. Théh, is a field. Thatis, givefu] € Z,, [a] #
[0] then there exist®] € Z, with [a] * [b] = [1].

Proof: Let[a] # [0], thenp does not divide: and soged(a, p) = 1. Modifying the
proof of Theorem 1.8.2 (or using the Euclidean Algorithm) substituting absolute value
for degree, there exist integerst so thatsa + tp = 1. But then[s|  [a] = [sa] + [0] =
[sa] + [tp] = [sa + tp] = [1] sO[a]~! = [s].

There is one other wonderful theorem ab@ytwhich we will need, this one origi-
nally due to Fermat.

Theorem 1.2 (Fermat's Little Theorem) Let p be a prime number. Then for every
la] € Zy, [a]? = [a].
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Proof: This is usually proved as a consequence of Lagrange’s Theorem, alluded
to in §4.9. There is a nice simple proof by induction: kot 0 the result is obvious,
[0]7 = [0]. Supposéa)? = [a] then by the binomial theorelfa + 1)? = a? + pa?~! +
C(p,2)aP~2 + --- + pa + 1 whereC(p, k) is the binomial coefficient. It is not hard to
see that’(p, k) is divisible byp for k =1,2,... ,)p—1s0(a+ 1)’ =a? + 1 (mod p)
giving [a + 1J? = [a + 1] which finishes the induction step.

If [a] € Z, we write [a] + [a] = 2[al, [a] + [a] + [a] = 3]a], etc. Itis not hard to
see that for each non-negativethatm[a] = [ma], SO we can extend this notation for
negativern as well. An important property of Z/p is thafa| = [pa] = [0] for every
la] € Z,. A field which satisfies this property is said to halaracteristicp.

We finally mention that there is a functien: Z — Z, given byo(a) = [a]. We
haveo(a+b) = [a+b] = [a] + [b] = o(a) + o(b) and likewises (a x b) = o(a) * o (b).

It follows thato preserves arithmetic, or in other words, we may do our arithmetic in
Z and then apply or we may apply and then do our arithmetic i, in either case
getting the same result. In modern algebra wes@yahomomorphism

2 Polynomials overZz,

Having more or less carefully developed the arithmetiZpin the last section we will
now allow ourselves to get sloppy and writdor [a] when it is clear from context that

we are inZ, and notZ. SinceZ, satisfies the field properties we can talk about poly-
nomials with coefficients ifZ,. However there is one technical detail which we briefly
alluded to in§1.7 which becomes important here, the difference between a polynomial
formand a polynomialunction For a more complete discussion on this topic see either
of the abstract algebra texts by Birkoff and Mac Lane.

A polynomial formwith coefficients inZ, is an expressiorf = ag + a;z + axx? +
.-+ + a,z™ where then; € Z, andz is a formalplace holder Alternatively,z can be
considered a special element of a larger integral domain. The important property is that
polynomialsf = ay + a1z + asx? + --- + ap,a™ andg = by + bz + - - - + b,2™ are
equalifand only ifa; = b, forall j = 0,1,2, .. ..

A polynomial functioron the other hand is a functiof: Z, — Z, given by a
formula f(z) = ap + a1z + asz® + -+ + a,z™ Where herer is considered to be a
variable The important property here is that polynomial functigiis) = ag + a1z +
asr?+- -+ a,z" andg(z) = by +byz+- - -+ b, 2™ areequalif and only if f(c) = g(c)
for everyc € Z,,.

In previous chapters where we considered polynomials with coefficier@s iR
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or C, there was no problem as Theorem 1.7.3 applied to say that polynomial forms
and polynomial functions are essentially the same thing. But with coefficierfg in
this is not true, for one thing there are onl§ possible function&, — Z/p, all of
them being polynomial functions! (This can be proven by Lagrange interpolation.)
However the polynomial forms, 22, 23, 2%, . .. are all distinct, i.e. there are infinitely
many polynomial forms.

Given a polynomial forny = ay+a,x+asz?+- - - +a,2™ there is a corresponding
polynomial functionf(z) = ag + aiz + asz?® + - - - + a,z™. What can happen ové,
is that different polynomial forms can correspond to the same polynomial function. For
instance the polynomial formgs = = andg = zP are different but by Fermat’s Little
Theorem the polynomial functiongz) = g(x).

Polynomial forms can be added and multiplied by the formulas for the coefficients
given in§l.4. AsZ, satisfies all the field properties it is not difficult to show that many
of the theorems i§1.5, 1.6, 1.7, 1.8 and 1.9 hold f@,[z], the ring of polynomial
forms. In particular, Theorems 1.5.1,1.6.1,1.6.2,1.7.1,1.7.2, (not 1.7.3 or 1.7.4) 1.8.2
(and the Euclidean Algorithm), 1.9.3, 1.9.4 and 1.9.7 hold for polynomial forms over
Ly.

Polynomial functions can be added and multiplied as functions. The correspon-

dencef — f(z) respects the two different sets of operations and is another example of
ahomomorphismHowever the above mentioned theorems do not apply to polynomial
functions overZ,, for instance 1.5.1, 1.6.1 do not make sense as there is no notion of
degree, theorems such as 1.9.3, 1.9.4 are simply nonsense when applied to functions.

Thus, for the remainder of this chapter, the wadlynomial will mean
polynomial form.

As noted above, the Euclidean Algorithm holds for polynomials @&erApplying
this algorithm over@ can get messy, and floating point approximations may change
the aspect of the problem drastically — all polynomials are “approximately” relatively
prime. Since there are only elements ofZ/p the numbers don’t get messy. Thus
if one wants to check rational polynomials to see if they are relatively prime (eg. if
one is checking for multiple roots) it is recommended that one first try the Euclidean
algorithm overZ, for one or more suitablg. We now explore the relationship between
gcd’s overZ[z] and overZ,|x].

Given a polynomialf = ap+a1x+- - - +a,z" in Z[z] we write[f] = [ao] + [a1]z +

-+ + [an]z™ In Zy[x]. The correspondenceé— [f] extends the function : Z — Z,

of the previous section and is again a homomorphism. We have
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Theorem 2.1 Letf = ap+arz+---+a,z", h = bg+bix+---+b,x™ € Z[x] and let
p be a prime integer. Legj be a gcd off andh in Z[z]. Then[g] dividesged([f], [h]) In
Zy|z]. In particular, if [f], [h] are relatively prime, and eithet,, or b, is not divisible
byp, thenf, h are relatively prime inQ[x]. Moreover, if in addition tdg] = 1, f, h are
primitive inZ[z] then f, h are relatively prime irZ[z].

Proof: By the homomorphism propertyy]|[f] and[g]|[] so by definition of greatest
common divisor|g|| gcd([f], [h]). Now supposg = cy+ c1z+ - - - + ¥, ¢, # 0, and
lg] = 1. By Theorem 5.2.%;|a,, andc,|b,, S0 our hypothesis om,, b,, assures thatj,
is not divisible byp, i.e.[cx] # 0. Thusdeg g = deg[g] = 0 so f, h are relatively prime
in Q[z]. If in addition f, h are primitive then by Theorem 5.1/61 are relatively prime
in Z[x].

We end this section with a brief discussion of quadratic equationsZyveXs long
asp # 2, anda # 0, thenax? + bx + ¢ = 0 can be rewritten by completing the square
as firstz? + (b/a)z + (¢/a) = 0 and then

b, b, ¢ b —dac
(x+%) _(2a> a  4a?

Thus, as in the usual case, there is a roatitot bz +c if and only if > — 4ac is a square

in Z/p. Solving an equatiofy]* = [d] in Z, is equivalent to solving a congruence

y*> = d (mod p) in Z. Integersd which satisfy this congruence for somere called
guadratic residues modulp. The study of quadratic residues has been an important
topic in Number Theory and there have been important and elegant contributions to
this study by Euler, Legendre, Gauss and Jacobi. We refer the interested reader to
any Number Theory text. The results of this theory say that about half of the integers
n,1 < n < p are quadratic residues moduylpand there are fairly easy algorithms to
determine which ones. Thus, about half of the quadratic equatidfig:ith have roots

in Z,. In §5.10 we will discuss the topic of roots of possibly higher degree polynomials
in Zy[z].

3 Factoring in Z,|x]

Factoring inZ,[z] has been studied extensively, partly because it is, as we will see,
considerably easier than factoring ov&r:] and partly because there are a number of
commercially important applications to coding theory and communications theory. For
one thing,Z,[z] has only finitely many polynomials in any given degree, and hence
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only finitely many monic irreducible polynomials. jfis a small prime and is a small
number it is practical to make a table of all monic irreducible polynomials of degree d
in Zy[z].

For example fop = 2 we have

Irreducible polynomials of degree 1

r,r+1
Irreducible polynomials of degree 2
2?4+ +1
Irreducible polynomials of degree 3
B+ l28+22+1
Irreducible polynomials of degree 4

P R R R L N R LB R |

The connection between factoringZp|x] andZ[z] is given by the following theo-
rem:

Theorem 3.1 Let f = ap+ax+asx®+- - -+a,2" € Z[x] andp be a prime number. If
[f]is irreducible inZ,[x] anda,, is not divisible by thenf is irreducible inZ[z]. More
specifically, ifp does not divide.,, and [f] has no factor (irreducible or otherwise) of
degreed then f has no factors of degreé

Proof: This follows from the homomorphism property, and the fact that the hypothesis
ona, and Theorem 5.2.1 insure that the degre¢ ahd its factors are preserved under
the homomorphisri[z| — Z,[z].

As an application, it is follows from our table of irreducible polynomial&inthat
322 + 5z + 7,23 + T2 + 4z + 3 andz® + 222 + 5z + 7 are all irreducible irZ[z].

As another application, it can be shown, by methods to be discussed below, that
f =%+ 2% — 32* — 323 + 822 + 2x — 5 factors as a product of a degree 1, degree 3
and degree 4 polynomial i3 and a degree 2 times degree &if2. In Z, there is no
linear factor, sof has no linear factor, i3 there is no quadratic factor, gohas no
guadratic factor, itZ, there are no factors of degree 3 or 4fslvas no factors of degree
3 or 4. Sincef is of degree 8 it follows thaf is irreducible inZ[z]. It appears that this



3 FACTORING IN Zp[X] 7

f is notirreducible over an¥, but is irreducible oveF, at any rate:* + 1 satisfies this
condition. Thus there is no converse, or partial converse, to 3.1.

In recent years several very efficient algorithms for factoring polynomials Byer
have been developed. Perhaps the most efficient and best known is one due to E.
Berlekamp in 1967. Berlekamp’s algorithm uses some advanced ideas and linear al-
gebra, so we will not discuss it here. Instead we will explain another algorithm called
distinct-degree factorizatiowhich is somewhat simpler. This method had a somewhat
mysterious origin in the late 1950's It is implemented, for instance, in MAPLE as a sub-
routine for MAPLE’s integer factoring prografactor. Before describing this method
we breifly discuss the idea of congruence of polynomials.

Let F denote one of the fieldQ, R, C, or Z, and consider the ring of polynomials
with coefficientsF'. Letu(x) be a fixed polynomial. We saf(x), g(x) arecongruent
modulou(z), written f(z) = g(z) (mod u(x)) if f(z) — g(x) is divisible byu(z), al-
ternatively if f(z), g(x) have the same remainder after divisionugy:). This notion of
congruence has the properties of congruence moddlscussed earlier in this chapter.

In particular, congruence respects addition, subtraction and multiplication. Further, if
u(x) has degree, by the Division Theorem, each polynomiflx) is congruent to a
unique polynomial of degree n.

The distinct-degree factorization method is based on the following amazing theorem

the proof of which is beyond the scope of this book.

Theorem 3.2 Let g(z) be an irreducible polynomial of degreé Theng(x) divides
27" — 2 but does not divide?* — z for ¢ < d.

Thus the method of the distinct-degree algorithm to find factotg ©f is basically
to take the gcd ofi(z) and2?” — = whered is the degree of the desired factor. The
problem is thap? can be quite large and a direct computation of the gcd would make
this method impractical, in fact no easier than dividing each ofpthgolynomials of
degreed into u(x) directly. We are saved by the following simple fact, more or less a
restatement of Lemma 1.8.3.

Theorem 3.3 Supposeg(z) = h(x) (mod u(z)). Thenged(g(z), u(x)) = ged(h(x), u(x)).

Thus we may replace™ by g(x) wheredeg g(z) < degu(x) andg(xz) = a”
(mod u(z)). But the nice thing, is if we have calculatedz) for n = p¢, then
27"+t = g(z)? (mod u(z)). But even this calculation is easy due to the following
suprising theorem it,,.

Theorem 3.4 If f = ag + a1z + - -+ + ap,a™ € Zy[z] then fP = ag + ay2? + axx’p +
-+« +a"2". In other notation,f(z)? = f(aP).
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Proof: First from the binomial formula, using the fact that the binomial coefficients
C(p,r) = 0 (mod p) for 0 < r < p, we have the “Freshman Binomial Theorem”
(a + b)? = a? + bP. By induction we havef? = (ag)? + (a12)? + (asx?®)? + -+ +
(a,x™)P. The result follows from Fermat'’s Little Theorem. Note since we are dealing
with polynomial forms, not functions, Fermat's theorem does not apply’tg which

is not equal tor’.

The distinct-degree algorithm to find irreducible factors.of) € Z,[z| of degree
n now proceeds as follows:

1. Calculate ged(u(x),u'(x)) over Z, and divide out any multiple factors, the
rest of the algorithm does not work as well with multiple factors present.

2. Initialize d = 0 and g(z) = z.

3. If d > n/2, stop, u(x) is irreducible. Otherwise replace d by d + 1 and raise
g(x) to the pth power modulo u(z), i.e. replace g(x) by a polynomial of
degree < n congruent to g(z)? (mod u(x)). Note by 3.4 only one division
is required and the polynomial never has degree greater than (n — 1) x p.
With more divisions we can arrange our arithmetic so the degree never
exceeds n.

4. Find h(z) = ged(g(x)—z,u(z)). If not 1, h(z) is the product of all irreducible
factors of degree d.

5. Divide u(z) by h(z) and replace u(z) by the quotient and n by the degree
of this quotient. Go back to step 3.

Note that this algorithm does not necessarily find all the irreducible factors but
only the product of the irreducible factors of each degree. With additional work one
can actually find all the factors, see [D. KnutBeminumerical Algorithms4.6.2].
However, for many purposes, eg. proving irreducibility, it is not the actual factors but
the number of factors of each degree that is important. The algorithm above finds this
guite nicely.

4 Roots of Polynomials inZ,

In this last optional section we discuss the problem of counting the number of roots of
a polynomial in the ringZ,, wheren may not be a prime number. There are several
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surprises, one being the appearance of Newtons method, even though we are doing
modular arithmetic and not numerical analysis! The material in this section is based on
§3.4 of the bookFundamentals of Number Theotyy W.J. LeVeque, 1977, which was
most recently available from Dover Publications.

We start with the case = p is a prime number. The main result is

Theorem 4.1 Let f(x) € Z,[x] wherep is a prime number. The number of distinct so-
lutions to the equatiotf(x) = 0 in Z, is the degree ofcd(f(x), 2P — x). In particular,
if f(z) has degreel then f(x) hasd distinct roots inZ, if and only if f(x)[(z? — z).

Proof: Fermat’s Little Theorem says that each elemeriZpis a root ofz” — x from
which it follows from the root Theorem that

o —w=a(z— ) -2 (z-[p-1]) 3)

Each root off(x) corresponds to a linear factor — [m]) so counting the number of
roots amounts to counting the distinct linear factors, i.e. the degrgel 0f (z), ¥ — ).

As a corollary of this we get a quick proof of a famous theorem of number theory:
Corollary 4.2 (Wilson’s Theorem) If pis a prime number, thefp—1)! = —1 (mod p).

Proof: The result is true by inspectionjf = 2. Now suppose is an odd prime. By
the theory of symmetric polynomials (Theorem 4.8.1) the coefficientaf the right
of Equation 3igp — 1)! sincep — 1 is even. But the coefficent of on the left is—1.

We now consider general We first remind the reader thatsifis not prime most
of the theorems of Chapter 1 do not hold.

Example 4.3 Letn = 15 and f(z) = z* + 3z + 2 € Zy5[z]. Then by inspection one
sees thaf (z) has roots: = 4,8, 13 and14 (mod 15) violating Theorem 1.7.2.

Example 4.4 Letn = 8, f(z) = 1+2z+42% andg(x) = 1—2x. Thenf(x)*g(x) = 1
in Zg violating Theorem 1.5.1. Note thgtx) is a non-constant polynomial which has
a multiplicative inverse!

An application of the Chinese Remainder Theorem (see any number theory book)
gives
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Theorem 4.5 Let f(z) € Z[z] andm, n integers withged(m, n) = 1. Then the number
of roots of[f] in Z,,, is the number of roots dff| in Z,, multiplied by the number of
roots of[f] in Z,.

Proof: Givenf(z;) =0 (mod m)andf(xzz) =0 (mod n) by the Chinese remainder
theorem there is a uniquewith 0 < y < nm and

y = z; (modm)

y = x2 (modn)

thenf( ) =0 (mod m)som|f(y)andf(y) =0 (mod n)son|f(y). Sinceged(m,n) =

1 thenmn|f(y) so f(y) = 0 (mod mn). Conversely iff(y) = 0 (mod mn) then
mn|f(y) sof(y) =0 (mod m)andf(y) =0 (mod n) so every root ir¥,,, is of this
form.

Now we note that if. > 1 thenn factors inZ asn = p{'p5* - - - p¢” so as a corollary
we get

Theorem 4.6 Letn = p{'ps? - - p¢ be an integer greater than 1. Le¢tz) € Z[z].
Then the number of roots of (z)] € Z,|x] is the product over the number of roots of
[f(z)] ineach ringZ <.

Thus, to understand the general case, it suffices to understand the speciakcase
p° wherep is prime ande > 1. Of course ife = 1 this is just Theorem 4.1. We will
show, inductively, how to treat the case= p¢*! assuming the case= p° is known.

The key is that ifz is a solution tof(z) = 0 (mod p**!) thenp™!|f(x) so in
particularp| f (z) and hencer is also a solution t¢f(x) = 0 (mod p€). Thus we will
start with a fixed solution to f(zy) = 0 (mod p°) and show how to find all solutions
to f(z) =0 (mod p“™!) which are congruent to, mod p°.

Butif 0 < z < pt! andx = zy (mod p°) thenz = xy + tp® where0 < t < p.
Now by using Horner’s process §2.3 and Theorem 5.1.1 we see thaf {fr) € Z[z]
andc € Z that we have a Taylor series

1) = 0)+ S — )+ T30

where the coefficientg)(c)/;! are integers. Now letting = =, + tp° andc = x
thenx — ¢ = tp° so this becomes

(:E—C)2+--~

ﬂ@Zf@w+f(ﬁp+f%)ﬁﬁ+”.
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but we will be reducing this modulg! andp®*!|p* so we actually have

f(@) = fl@o) + f'(wo)tp® + sp™

for some integes.
Now recalling that we chose, so thatf(z;) = 0 (mod p¢) and we wantz to
satisfy f(z) = 0 (mod p“™') we have the integer equation

which gives the congruence

0=L99 . prag)t (mod p)
p
or
Fanjt = =220 Gnod p) @

Now we have two cases. The less comnsamgular case is whenf’(zy) = 0
(mod p). In this case if% # 0 (mod p) there are no solutions to Equation 4 and the
solutionzy of f(zy) = 0 (mod p¢) produces no solutions tf(z) = 0 (mod p°*).

On the other hand if alsé% = 0 (mod p) then Equation 4 becomésx ¢t = 0
(mod p) and everyt is a solution,0 < ¢ < p, so the solution:, produces distinct
solutions tof (z) = 0 (mod p*™t).

The more common and interesting case isrtba-singularcase whery’(xq) # 0
(mod p). SinceZ, is a field we can divide Equation 4 By’ (x)] to get

:-_[pzﬁgiﬂ

Now plugging this value of t into the equatian= z, + tp° we get the equation (in

Lipe+)

f (o)
f'(xo)
which the astute reader notes is just the iteration formula for Newton’s method!

One technicality we should mention is tt#at+ is not a field so we must be careful

using division. But sincef’(zg) # 0 (mod p) thenged(p®*?, f'(z9)) = 1s01 =
rpett 4+ sf'(xo) for somer,s € Z so[f'(x¢)]"" = [s] in Z,e+1. In practice,s can be
found by the extended Euclidean Algorithm agin8.

r = Ty —
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Example 4.7 We end these notes by finding the unique solutiarfte2 = 0 (mod 2401),
i.e. the square root of 2 moduld. By inspection, trying all possibilities, we see that
the unique solution te? — 2 =0 (mod 7) iszy = 4 (mod 7)

Now if f(z) = 2? — 2 thenf’(z) = 2x so an application of Newtons method gives

=1 f(wo) _ 4 — 114] (mod 49)

P f(zo) B

wherelil is calculated i where[8] ™! = [43] so gl = [14][43] = [602] = [14] so

x1 = [4] — [14] = [4] + [35] = [39] and hence the solutionis = 39 (mod 49)
Next we have

Ty = X1 — =39 — —— (mod 343
=0 ) R
Now in Zy; we have'siel = Ll — [147][22) = [3234] = [147) sox, = [39] - [147] =
[39] + [196] = [235] and hence:; = 235 (mod 343).
Finally
flx2) [55223]
=1, — =235 — o2 d 2401
T3 T2 f,<x2) 35 [470] (mo 0 )

However here we are lucky in tha401(55223 s0[55223] = 0in Zayyg;. Thuszs = 235
(mod 2401) is our desired answer!



