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1 Modular Arithmetic

Modular arithmetic was first explicitly given by Gauss in 1801 in his famous book
Disquisitiones Arithmeticaewhere he was studying the cyclotomic polynomialxp − 1.
In 1829 Galois showed the importance of finite fields in understanding polynomial
equations. As we will see, modular arithmetic plays a particularly important role in the
study of factoring.

Let n be a fixed integer,n > 1. Two integersa, b are said to becongruent modulo
n if the differencea− b is divisible byn, we write thisa ≡ b (mod n). Alternatively,
the Division Algorithm forZ says that givena ∈ Z andn > 1 there exist a unique
quotientq and remainderr with a = nq + r with 0 ≤ r < n. Given integersa, b write
a = nq + r andb = nq′ + s, thena ≡ b (mod n) if and only if r = s, i.e. two numbers
are congruent if and only if they have the same remainder after division byn. Note that
if n = 2, a ≡ b (mod n) says that either botha, b are even or botha, b are odd. Thus
congruence modulon is a generalization of the idea of “even” or “odd”.

Congruence modulo n is anequivalence relation, that is, a weak type of equality. In
particular we have
1) a ≡ a (mod n) for all a (reflexivity)
2) if a ≡ b (mod n) thenb ≡ a (mod n) (symmetry)
3) if a ≡ b andb ≡ c (mod n) thena ≡ c (mod n) (transitivity)

One can easily prove that ifa ≡ b (mod n) andc ≡ d (mod n) then

a + c ≡ b + d (mod n) (1)

ac ≡ bd (mod n) (2)

from which it follows that

a− c ≡ b− d (mod n)

ak ≡ bk (mod n) if k ≥ 0

In particular the relation of congruence respects all arithmetic operations. For ex-
ample if we havef(x) = a0+a1x+· · ·+anx

n, c ∈ Z and we wish to find the remainder
of f(c) after division byn we can do all arithmetic and then divide byn and take the
remainder, we can dividec by n and take the remainder before doing the arithmetic, or
we can divide byn and take the remainder after each step.

For fixedn anda ∈ Z we denote by[a] = {b ∈ Z|a ≡ b (mod n)}, i.e. [a] is
the set of all integers which have the same remainder after division byn asa. For
example ifn = 5 then [3] = {. . . ,−12,−7,−2, 3, 8, 13, 18, . . .}. Or if n = 2 then
[0] = [2] = [4] = [−6] = · · · is the set of even integers and[1] = [3] = [−5] = · · · is
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the set of odd integers.[a] is called thecongruence classof a modulon. For a given
n the congruence classes[0], [1], . . . , [n − 1] partition Z, i.e., each integer is in one of
these congruence classes and no integer is in more than one. Ifa = nq + r, 0 ≤ r < n
thena ∈ [r] and[a] = [r]. More generally,

a ≡ b (mod n) if and only if [a] = [b].

Thus the congruence classes allow us to tradeequivalenceof integers forequalityof
classes.

Equation 1 and Equation 2 above can be restated as saying that if[a] = [b] and[c] =
[d] then[a+ c] = [b+d] and[ac] = [bd]. Thus[a]+ [b] = [a+ b] and[a]∗ [b] = [ab] give
well defined operations of addition and multiplication on the set of congruence classes
modulon. It is easy to check that from Equations 1 and 2 the commutative, associative
and distributive laws ofZ hold for congruence classes. Further[0]+ [a] = [0+a] = [a]
and[1]∗ [a] = [1∗a] = [a], so[0], [1] are the zero and the multiplicative identity. Finally
[a] + [−a] = [0] so we have additive inverses and can write−[a] = [−a]. Thus laws
C1, C2 as well as R1 - R8 hold for this modular arithmetic.

Thus we writeZn = {[0], [1], ..., [n−1]} and call this set thering of integers modulo
n, as we have a ring in the sense of§1.1. (Many books use the notationZn to mean
something else, a more standard notation for the ring of integers modulon is Z/nZ.)
Zn is an arithmetic withn elements. UnfortunatelyZn in general does not even satisfy
the integral domain axiom I1 in general, for instance ifn = 6 then[2] ∗ [3] = [6] = [0]
but neither[2] = [0] nor [3] = [0]. However Gauss discovered the following wonderful
fact:

Theorem 1.1 Letp be a prime number. ThenZp is a field. That is, given[a] ∈ Zp, [a] 6=
[0] then there exists[b] ∈ Zp with [a] ∗ [b] = [1].

Proof: Let [a] 6= [0], thenp does not dividea and sogcd(a, p) = 1. Modifying the
proof of Theorem 1.8.2 (or using the Euclidean Algorithm) substituting absolute value
for degree, there exist integerss, t so thatsa + tp = 1. But then[s] ∗ [a] = [sa] + [0] =
[sa] + [tp] = [sa + tp] = [1] so [a]−1 = [s].

There is one other wonderful theorem aboutZp which we will need, this one origi-
nally due to Fermat.

Theorem 1.2 (Fermat’s Little Theorem) Let p be a prime number. Then for every
[a] ∈ Zp, [a]p = [a].
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Proof: This is usually proved as a consequence of Lagrange’s Theorem, alluded
to in §4.9. There is a nice simple proof by induction: Fora = 0 the result is obvious,
[0]p = [0]. Suppose[a]p = [a] then by the binomial theorem(a + 1)p = ap + pap−1 +
C(p, 2)ap−2 + · · · + pa + 1 whereC(p, k) is the binomial coefficient. It is not hard to
see thatC(p, k) is divisible byp for k = 1, 2, . . . , p− 1 so(a + 1)p ≡ ap + 1 (mod p)
giving [a + 1]p = [a + 1] which finishes the induction step.

If [a] ∈ Zp we write [a] + [a] = 2[a], [a] + [a] + [a] = 3[a], etc. It is not hard to
see that for each non-negativem thatm[a] = [ma], so we can extend this notation for
negativem as well. An important property of Z/p is thatp[a] = [pa] = [0] for every
[a] ∈ Zp. A field which satisfies this property is said to havecharacteristicp.

We finally mention that there is a functionσ : Z → Zp given byσ(a) = [a]. We
haveσ(a + b) = [a + b] = [a] + [b] = σ(a) + σ(b) and likewiseσ(a ∗ b) = σ(a) ∗ σ(b).
It follows thatσ preserves arithmetic, or in other words, we may do our arithmetic in
Z and then applyσ or we may applyσ and then do our arithmetic inZp, in either case
getting the same result. In modern algebra we sayσ is ahomomorphism.

2 Polynomials overZp

Having more or less carefully developed the arithmetic ofZp in the last section we will
now allow ourselves to get sloppy and writea for [a] when it is clear from context that
we are inZp and notZ. SinceZp satisfies the field properties we can talk about poly-
nomials with coefficients inZp. However there is one technical detail which we briefly
alluded to in§1.7 which becomes important here, the difference between a polynomial
formand a polynomialfunction. For a more complete discussion on this topic see either
of the abstract algebra texts by Birkoff and Mac Lane.

A polynomial formwith coefficients inZp is an expressionf = a0 + a1x + a2x
2 +

· · · + anx
n where theaj ∈ Zp andx is a formalplace holder. Alternatively,x can be

considered a special element of a larger integral domain. The important property is that
polynomialsf = a0 + a1x + a2x

2 + · · · + anx
n andg = b0 + b1x + · · · + bmxm are

equalif and only if aj = bj for all j = 0, 1, 2, . . ..
A polynomial functionon the other hand is a functionf : Zp → Zp given by a

formula f(x) = a0 + a1x + a2x
2 + · · · + anx

n where herex is considered to be a
variable. The important property here is that polynomial functionsf(x) = a0 + a1x +
a2x

2+ · · ·+anx
n andg(x) = b0+b1x+ · · ·+bmxm areequalif and only if f(c) = g(c)

for everyc ∈ Zp.
In previous chapters where we considered polynomials with coefficients inQ, R
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or C, there was no problem as Theorem 1.7.3 applied to say that polynomial forms
and polynomial functions are essentially the same thing. But with coefficients inZp

this is not true, for one thing there are onlypp possible functionsZp → Z/p, all of
them being polynomial functions! (This can be proven by Lagrange interpolation.)
However the polynomial formsx, x2, x3, x4, . . . are all distinct, i.e. there are infinitely
many polynomial forms.

Given a polynomial formf = a0 +a1x+a2x
2 + · · ·+anx

n there is a corresponding
polynomial functionf(x) = a0 + a1x + a2x

2 + · · ·+ anx
n. What can happen overZp

is that different polynomial forms can correspond to the same polynomial function. For
instance the polynomial formsf = x andg = xp are different but by Fermat’s Little
Theorem the polynomial functionsf(x) = g(x).

Polynomial forms can be added and multiplied by the formulas for the coefficients
given in§1.4. AsZp satisfies all the field properties it is not difficult to show that many
of the theorems in§1.5, 1.6, 1.7, 1.8 and 1.9 hold forZp[x], the ring of polynomial
forms. In particular, Theorems 1.5.1, 1.6.1, 1.6.2, 1.7.1, 1.7.2, (not 1.7.3 or 1.7.4) 1.8.2
(and the Euclidean Algorithm), 1.9.3, 1.9.4 and 1.9.7 hold for polynomial forms over
Zp.

Polynomial functions can be added and multiplied as functions. The correspon-
dencef 7→ f(x) respects the two different sets of operations and is another example of
ahomomorphism.However the above mentioned theorems do not apply to polynomial
functions overZp, for instance 1.5.1, 1.6.1 do not make sense as there is no notion of
degree, theorems such as 1.9.3, 1.9.4 are simply nonsense when applied to functions.

Thus, for the remainder of this chapter, the wordpolynomial will mean
polynomial form .

As noted above, the Euclidean Algorithm holds for polynomials overZp. Applying
this algorithm overQ can get messy, and floating point approximations may change
the aspect of the problem drastically – all polynomials are “approximately” relatively
prime. Since there are onlyp elements ofZ/p the numbers don’t get messy. Thus
if one wants to check rational polynomials to see if they are relatively prime (eg. if
one is checking for multiple roots) it is recommended that one first try the Euclidean
algorithm overZp for one or more suitablep. We now explore the relationship between
gcd’s overZ[x] and overZp[x].

Given a polynomialf = a0 +a1x+ · · ·+anx
n in Z[x] we write[f ] = [a0]+[a1]x+

· · · + [an]xn in Zp[x]. The correspondencef 7→ [f ] extends the functionσ : Z → Zp

of the previous section and is again a homomorphism. We have
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Theorem 2.1 Letf = a0 +a1x+ · · ·+anx
n, h = b0 +b1x+ · · ·+bmxm ∈ Z[x] and let

p be a prime integer. Letg be a gcd off andh in Z[x]. Then[g] dividesgcd([f ], [h]) in
Zp[x]. In particular, if [f ], [h] are relatively prime, and eitheran or bm is not divisible
byp, thenf, h are relatively prime inQ[x]. Moreover, if in addition to[g] = 1, f, h are
primitive inZ[x] thenf, h are relatively prime inZ[x].

Proof: By the homomorphism property,[g]|[f ] and[g]|[h] so by definition of greatest
common divisor,[g]| gcd([f ], [h]). Now supposeg = c0 + c1x+ · · ·+ ckx

k, ck 6= 0, and
[g] = 1. By Theorem 5.2.1ck|an andck|bm so our hypothesis onan, bm assures thatck

is not divisible byp, i.e. [ck] 6= 0. Thusdeg g = deg[g] = 0 sof, h are relatively prime
in Q[x]. If in additionf, h are primitive then by Theorem 5.1.6f, h are relatively prime
in Z[x].

We end this section with a brief discussion of quadratic equations overZp. As long
asp 6= 2, anda 6= 0, thenax2 + bx + c = 0 can be rewritten by completing the square
as firstx2 + (b/a)x + (c/a) = 0 and then

(x +
b

2a
)2 = (

b

2a
)2 − c

a
=

b2 − 4ac

4a2

Thus, as in the usual case, there is a root toax2+bx+c if and only if b2−4ac is a square
in Z/p. Solving an equation[y]2 = [d] in Zp is equivalent to solving a congruence
y2 ≡ d (mod p) in Z. Integersd which satisfy this congruence for somey are called
quadratic residues modulop. The study of quadratic residues has been an important
topic in Number Theory and there have been important and elegant contributions to
this study by Euler, Legendre, Gauss and Jacobi. We refer the interested reader to
any Number Theory text. The results of this theory say that about half of the integers
n, 1 < n < p are quadratic residues modulop, and there are fairly easy algorithms to
determine which ones. Thus, about half of the quadratic equations inZp[x] have roots
in Zp. In §5.10 we will discuss the topic of roots of possibly higher degree polynomials
in Zp[x].

3 Factoring in Zp[x]

Factoring inZp[x] has been studied extensively, partly because it is, as we will see,
considerably easier than factoring overZ[x] and partly because there are a number of
commercially important applications to coding theory and communications theory. For
one thing,Zp[x] has only finitely many polynomials in any given degree, and hence
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only finitely many monic irreducible polynomials. Ifp is a small prime andd is a small
number it is practical to make a table of all monic irreducible polynomials of degree d
in Zp[x].

For example forp = 2 we have

Irreducible polynomials of degree 1

x, x + 1

Irreducible polynomials of degree 2

x2 + x + 1

Irreducible polynomials of degree 3

x3 + x + 1, x3 + x2 + 1

Irreducible polynomials of degree 4

x4 + x + 1, x4 + x3 + 1, x4 + x3 + x2 + x + 1

The connection between factoring inZp[x] andZ[x] is given by the following theo-
rem:

Theorem 3.1 Letf = a0+a1x+a2x
2+ · · ·+anx

n ∈ Z[x] andp be a prime number. If
[f ] is irreducible inZp[x] andan is not divisible byp thenf is irreducible inZ[x]. More
specifically, ifp does not dividean and [f ] has no factor (irreducible or otherwise) of
degreed thenf has no factors of degreed.

Proof: This follows from the homomorphism property, and the fact that the hypothesis
onan and Theorem 5.2.1 insure that the degree off and its factors are preserved under
the homomorphismZ[x] → Zp[x].

As an application, it is follows from our table of irreducible polynomials inZ2 that
3x2 + 5x + 7, x3 + 7x2 + 4x + 3 andx3 + 2x2 + 5x + 7 are all irreducible inZ[x].

As another application, it can be shown, by methods to be discussed below, that
f = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5 factors as a product of a degree 1, degree 3
and degree 4 polynomial inZ13 and a degree 2 times degree 6 inZ/2. In Z2 there is no
linear factor, sof has no linear factor, inZ13 there is no quadratic factor, sof has no
quadratic factor, inZ2 there are no factors of degree 3 or 4 sof has no factors of degree
3 or 4. Sincef is of degree 8 it follows thatf is irreducible inZ[x]. It appears that this
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f is not irreducible over anyZp but is irreducible overZ, at any ratex4 +1 satisfies this
condition. Thus there is no converse, or partial converse, to 3.1.

In recent years several very efficient algorithms for factoring polynomials overZp

have been developed. Perhaps the most efficient and best known is one due to E.
Berlekamp in 1967. Berlekamp’s algorithm uses some advanced ideas and linear al-
gebra, so we will not discuss it here. Instead we will explain another algorithm called
distinct-degree factorizationwhich is somewhat simpler. This method had a somewhat
mysterious origin in the late 1950’s It is implemented, for instance, in MAPLE as a sub-
routine for MAPLE’s integer factoring programfactor. Before describing this method
we breifly discuss the idea of congruence of polynomials.

Let F denote one of the fieldsQ, R, C, or Zp and consider the ring of polynomials
with coefficientsF . Let u(x) be a fixed polynomial. We sayf(x), g(x) arecongruent
modulou(x), writtenf(x) ≡ g(x) (mod u(x)) if f(x)− g(x) is divisible byu(x), al-
ternatively iff(x), g(x) have the same remainder after division byu(x). This notion of
congruence has the properties of congruence modulon discussed earlier in this chapter.
In particular, congruence respects addition, subtraction and multiplication. Further, if
u(x) has degreen, by the Division Theorem, each polynomialf(x) is congruent to a
unique polynomial of degree< n.

The distinct-degree factorization method is based on the following amazing theorem
the proof of which is beyond the scope of this book.

Theorem 3.2 Let g(x) be an irreducible polynomial of degreed. Theng(x) divides
xpd − x but does not dividexpc − x for c < d.

Thus the method of the distinct-degree algorithm to find factors ofu(x) is basically
to take the gcd ofu(x) andxpd − x whered is the degree of the desired factor. The
problem is thatpd can be quite large and a direct computation of the gcd would make
this method impractical, in fact no easier than dividing each of thepd polynomials of
degreed into u(x) directly. We are saved by the following simple fact, more or less a
restatement of Lemma 1.8.3.

Theorem 3.3 Supposeg(x) ≡ h(x) (mod u(x)). Thengcd(g(x), u(x)) = gcd(h(x), u(x)).

Thus we may replacexn by g(x) wheredeg g(x) < deg u(x) and g(x) ≡ xn

(mod u(x)). But the nice thing, is if we have calculatedg(x) for n = pd, then
xpd+1 ≡ g(x)p (mod u(x)). But even this calculation is easy due to the following
suprising theorem inZp.

Theorem 3.4 If f = a0 + a1x + · · · + anx
n ∈ Zp[x] thenfp = a0 + a1x

p + a2x
2p +

· · ·+ anxnp. In other notation,f(x)p = f(xp).
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Proof: First from the binomial formula, using the fact that the binomial coefficients
C(p, r) ≡ 0 (mod p) for 0 < r < p, we have the “Freshman Binomial Theorem”
(a + b)p = ap + bp. By induction we havefp = (a0)

p + (a1x)p + (a2x
2)p + · · · +

(anx
n)p. The result follows from Fermat’s Little Theorem. Note since we are dealing

with polynomial forms, not functions, Fermat’s theorem does not apply to(xj)p which
is not equal toxj.

The distinct-degree algorithm to find irreducible factors ofu(x) ∈ Zp[x] of degree
n now proceeds as follows:

1. Calculate gcd(u(x), u′(x)) over Zp and divide out any multiple factors, the
rest of the algorithm does not work as well with multiple factors present.

2. Initialize d = 0 and g(x) = x.

3. If d > n/2, stop, u(x) is irreducible. Otherwise replace d by d+1 and raise
g(x) to the pth power modulo u(x), i.e. replace g(x) by a polynomial of
degree < n congruent to g(x)p (mod u(x)). Note by 3.4 only one division
is required and the polynomial never has degree greater than (n− 1) ∗ p.
With more divisions we can arrange our arithmetic so the degree never
exceeds n.

4. Find h(x) = gcd(g(x)−x, u(x)). If not 1, h(x) is the product of all irreducible
factors of degree d.

5. Divide u(x) by h(x) and replace u(x) by the quotient and n by the degree
of this quotient. Go back to step 3.

Note that this algorithm does not necessarily find all the irreducible factors but
only the product of the irreducible factors of each degree. With additional work one
can actually find all the factors, see [D. Knuth,Seminumerical Algorithms, §4.6.2].
However, for many purposes, eg. proving irreducibility, it is not the actual factors but
the number of factors of each degree that is important. The algorithm above finds this
quite nicely.

4 Roots of Polynomials inZn

In this last optional section we discuss the problem of counting the number of roots of
a polynomial in the ringZn wheren may not be a prime number. There are several
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surprises, one being the appearance of Newtons method, even though we are doing
modular arithmetic and not numerical analysis! The material in this section is based on
§3.4 of the bookFundamentals of Number Theoryby W.J. LeVeque, 1977, which was
most recently available from Dover Publications.

We start with the casen = p is a prime number. The main result is

Theorem 4.1 Letf(x) ∈ Zp[x] wherep is a prime number. The number of distinct so-
lutions to the equationf(x) = 0 in Zp is the degree ofgcd(f(x), xp−x). In particular,
if f(x) has degreed thenf(x) hasd distinct roots inZp if and only iff(x)|(xp − x).

Proof: Fermat’s Little Theorem says that each element ofZp is a root ofxp − x from
which it follows from the root Theorem that

xp − x = x(x− [1])(x− [2]) · · · (x− [p− 1]) (3)

Each root off(x) corresponds to a linear factor(x − [m]) so counting the number of
roots amounts to counting the distinct linear factors, i.e. the degree ofgcd(f(x), xp−x).

As a corollary of this we get a quick proof of a famous theorem of number theory:

Corollary 4.2 (Wilson’s Theorem) If p is a prime number, then(p−1)! ≡ −1 (mod p).

Proof: The result is true by inspection ifp = 2. Now supposep is an odd prime. By
the theory of symmetric polynomials (Theorem 4.8.1) the coefficient ofx on the right
of Equation 3 is(p− 1)! sincep− 1 is even. But the coefficent ofx on the left is−1.

We now consider generaln. We first remind the reader that ifn is not prime most
of the theorems of Chapter 1 do not hold.

Example 4.3 Let n = 15 andf(x) = x2 + 3x + 2 ∈ Z15[x]. Then by inspection one
sees thatf(x) has rootsx = 4, 8, 13 and14 (mod 15) violating Theorem 1.7.2.

Example 4.4 Letn = 8, f(x) = 1+2x+4x2 andg(x) = 1−2x. Thenf(x)∗g(x) = 1
in Z8 violating Theorem 1.5.1. Note thatf(x) is a non-constant polynomial which has
a multiplicative inverse!

An application of the Chinese Remainder Theorem (see any number theory book)
gives
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Theorem 4.5 Letf(x) ∈ Z[x] andm, n integers withgcd(m, n) = 1. Then the number
of roots of[f ] in Zmn is the number of roots of[f ] in Zm multiplied by the number of
roots of[f ] in Zn.

Proof: Givenf(x1) ≡ 0 (mod m) andf(x2) ≡ 0 (mod n) by the Chinese remainder
theorem there is a uniquey with 0 ≤ y < nm and

y ≡ x1 (mod m)

y ≡ x2 (mod n)

thenf(y) ≡ 0 (mod m) som|f(y) andf(y) ≡ 0 (mod n) son|f(y). Sincegcd(m, n) =
1 thenmn|f(y) so f(y) ≡ 0 (mod mn). Conversely iff(y) ≡ 0 (mod mn) then
mn|f(y) sof(y) ≡ 0 (mod m) andf(y) ≡ 0 (mod n) so every root inZmn is of this
form.

Now we note that ifn > 1 thenn factors inZ asn = pe1
1 pe2

2 · · · per
r so as a corollary

we get

Theorem 4.6 Let n = pe1
1 pe2

2 · · · per
r be an integer greater than 1. Letf(x) ∈ Z[x].

Then the number of roots of[f(x)] ∈ Zn[x] is the product over the number of roots of
[f(x)] in each ringZ

p
ej
j

.

Thus, to understand the general case, it suffices to understand the special casen =
pe wherep is prime ande ≥ 1. Of course ife = 1 this is just Theorem 4.1. We will
show, inductively, how to treat the casen = pe+1 assuming the casen = pe is known.

The key is that ifx is a solution tof(x) ≡ 0 (mod pe+1) thenpe+1|f(x) so in
particularpe|f(x) and hencex is also a solution tof(x) ≡ 0 (mod pe). Thus we will
start with a fixed solutionx0 to f(x0) ≡ 0 (mod pe) and show how to find all solutions
to f(x) ≡ 0 (mod pe+1) which are congruent tox0 mod pe.

But if 0 ≤ x < pe+1 andx ≡ x0 (mod pe) thenx = x0 + tpe where0 ≤ t < p.
Now by using Horner’s process of§2.3 and Theorem 5.1.1 we see that iff(x) ∈ Z[x]
andc ∈ Z that we have a Taylor series

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·

where the coefficientsf (j)(c)/j! are integers. Now lettingx = x0 + tpe andc = x0

thenx− c = tpe so this becomes

f(x) = f(x0) + f ′(x0)tp
e +

f ′′(x0)

2
t2p2e + · · ·
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but we will be reducing this modulope+1 andpe+1|p2e so we actually have

f(x) ≡ f(x0) + f ′(x0)tp
e + spe+1

for some integers.
Now recalling that we chosex0 so thatf(x0) ≡ 0 (mod pe) and we wantx to

satisfyf(x) ≡ 0 (mod pe+1) we have the integer equation

p
f(x)

pe+1
=

f(x0)

pe
+ f ′(x0)t + sp

which gives the congruence

0 ≡ f(x0)

pe
+ f ′(x0)t (mod p)

or

f ′(x0)t = −f(x0)

pe
(mod p) (4)

Now we have two cases. The less commonsingular case is whenf ′(x0) ≡ 0

(mod p). In this case iff(x0)
pe 6≡ 0 (mod p) there are no solutions to Equation 4 and the

solutionx0 of f(x0) ≡ 0 (mod pe) produces no solutions tof(x) ≡ 0 (mod pe+1).
On the other hand if alsof(x0)

pe ≡ 0 (mod p) then Equation 4 becomes0 ∗ t ≡ 0

(mod p) and everyt is a solution,0 ≤ t < p, so the solutionx0 producesp distinct
solutions tof(x) ≡ 0 (mod pe+1).

The more common and interesting case is thenon-singularcase whenf ′(x0) 6≡ 0
(mod p). SinceZp is a field we can divide Equation 4 by[f ′(x0)] to get

t = −
[

f(x0)

pef ′(x0)

]
Now plugging this value of t into the equationx = x0 + tpe we get the equation (in
Zpe+1)

x = x0 −
f(x0)

f ′(x0)

which the astute reader notes is just the iteration formula for Newton’s method!
One technicality we should mention is thatZpe+1 is not a field so we must be careful

using division. But sincef ′(x0) 6≡ 0 (mod p) thengcd(pe+1, f ′(x0)) = 1 so 1 =
rpe+1 + sf ′(x0) for somer, s ∈ Z so [f ′(x0)]

−1 = [s] in Zpe+1 . In practice,s can be
found by the extended Euclidean Algorithm as in§1.8.
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Example 4.7 We end these notes by finding the unique solution tox2−2 ≡ 0 (mod 2401),
i.e. the square root of 2 modulo74. By inspection, trying all possibilities, we see that
the unique solution tox2 − 2 ≡ 0 (mod 7) is x0 ≡ 4 (mod 7)

Now if f(x) = x2 − 2 thenf ′(x) = 2x so an application of Newtons method gives

x1 ≡ x0 −
f(x0)

f ′(x0)
= 4− [14]

[8]
(mod 49)

where [14]
[8]

is calculated inZ49 where[8]−1 = [43] so [14]
[8]

= [14][43] = [602] = [14] so
x1 = [4]− [14] = [4] + [35] = [39] and hence the solution isx1 ≡ 39 (mod 49)

Next we have

x2 ≡ x1 −
f(x1)

f ′(x1)
= 39− [1519]

[78]
(mod 343)

Now in Z343 we have1519]
[78]

= [147]
[78]

= [147][22] = [3234] = [147] sox2 = [39]− [147] =

[39] + [196] = [235] and hencex2 ≡ 235 (mod 343).
Finally

x3 ≡ x2 −
f(x2)

f ′(x2)
= 235− [55223]

[470]
(mod 2401)

However here we are lucky in that2401|55223 so[55223] = 0 in Z2401. Thusx3 ≡ 235
(mod 2401) is our desired answer!


