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Chapter 6

Analysis

Elliptic Functions

In this chapter we discuss Elliptic functions, a very important part of classical
mathematics that is usually overlooked at the undergraduate level. We concen-
trate on the Jacobi Elliptic functions which, while quite important in pure and
applied mathematics in the nineteenth century have been almost forgotten to-
day. While not part of the classical Theory of Equations course their inclusion
is consistent with one theme of this book – introducing classical mathematics in
a modern context. In addition, we will apply some of the theory of cubic and
biquadratic functions that we have learned earlier in the course.

6.1 Trigonometric and Hyperbolic Functions

The Jacobi elliptic functions were developed to solve problems that could not be
solved by the trigonmetic and hyperbolic functions. The reader will have a better
appreciation of the rest of this chapter if she or he reviews these functions. I will
remind you of some of the definitions but mostly I will give an exercise set to help
you review.

We will be working with the trigonometric functions sin, cos, tan and sec. Your
author is in sympathy with those who advocate not introducing young mathemat-
ics students to the cotangent and cosecant but feels that the secant is important
enough a function to have its own name. But we will be equally interested in
the inverse functions to these functions, especially the inverse sine sin−1 and the
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156 CHAPTER 6. ANALYSIS

inverse tangent tan−1. We use the standard but inconsistent convention that
cos2(x) means (cos(x))2 but cos−1(x) is the inverse function to cos, not the re-
ciprocal 1

cosx
= secx. Of special interest are the differentiation formulas for the

inverse functions, in particular the derivatives are rational or algebraic functions,
not trigonometric functions. You should also review the many relations between
the various trigonometric functions or inverse functions. In particular any of the
inverse functions can be expressed as an algebraic expression in any of the others.

Note that the trigonmetric functions can be extended to functions defined on
the entire complex plane. The formulas are

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2

where the complex exponential fuction can be defined by the usual power series
or in terms of the real trigonometric functions by

ex+iy = ex(cos y + i sin y)

The definition of the complex trigonometric functions can motivate the hyper-
bolic functions, mainly

sinh x =
ex − e−x

2
and cosh x =

ex + e−x

2

with tanh x = sinh(x)/ cosh(x) and sech(x) = 1/ cosh(x). Again you should recall
the relations between these such as cosh2 x − sinh2 x = 1, from which the name
“hyperbolic” arises, and the differentiation formulas. The hyperbolic functions
have inverse functions also. While you may work with them directly, it turns out
that the inverse hyperbolic functions can be expresed in terms of the logarithm
function.

Exercise 1 With this introduction, the reader is invited to try the following
exercise set as a warmup for this chapter.

1. Show sin2 z + cos2z = 1 for all complex z

2. Describe the function f(x) = i sin(ix) for x real.

3. Show sin−1(x) = tan−1

(

x√
1− x2

)
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4. Find tan(cos−1(x))

5. Find
d

dx
(
√
x)

6. Verify the formula for x > a > b

∫

dx

(x− b)
√
x− a

=
2√
a− b

sin−1

(
√

x− a

x− b

)

+ C

Hint: Differentiate both sides.

7. Verify the formula for a > b > x > c

∫

dx

(a− x)
√

(b− x)(x− c)
=

2
√

(a− b)(a− c)
sin−1

(
√

(a− b)(x− c)

(b− c)(a− x)

)

+C

8. Show 1− tanh2 x = sech2x for all real x

9. Describe the function g(x) = cosh(ix) for real x.

10. Show sinh−1(x) = cosh−1(
√
1 + x2)

11. Show sinh(tanh−1(x)) =
x√

1− x2

12. Given cosh−1 x = ln(x+
√
x2 − 1) show sech−1(x) = ln(1 +

√
1− x2)− ln x

13. When a > x > b verify the formula

∫

dx

(x− b)
√
a− x

=
−2√
a− b

sinh−1

(
√

a− x

x− b

)

+ C

14. For a > b > c > x verify

∫

dx

(a− x)
√

(b− x)(c− x)
=

2
√

(a− b)(a− c)
sinh−1

(
√

(a− b)(c− x)

(b− c)(a− x)

)

+C
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6.2 The Historical Background

It would be nice if we could say that the Jacobi elliptic functions parameterize the
ellipse the same way the trigonometric functions parameterize the circle, i.e. a con-
stant speed parameterization. But this is not true. The term “elliptic” is actually
not very descriptive but is used in deference to historical precedents. One possible
explaination is that the elliptic functions form a set of functions with properties
like the trigonometric and hyperbolic functions, but more like the trigonmetric.
The name “elliptic” may be used simply as meaning “not hyperbolic”. In this
section I will try to give another explaination of how this term perhaps came to
be used.

The 18th century saw the development of the calculus, primarily by the follow-
ers of Leibnitz such as the Bernoullis and Euler. They developed all the “stan-
dard” integration techniques using power, rational, exponential, logarithmic and
trigonometric functions. In particular they may have been amazed to find that
integrals involving square roots of quadratic functions often were expressed in
terms of the inverse trigonometric and hyperbolic functions. One problem they
could not solve was the calculation of the arc length of an arc of an ellipse.

To understand this, start with the ellipse

x2

a2
+

y2

b2
= 1

Assume, for the sake of argument, that b > a > 0, i.e. the major axis is along
the y-axis and the minor axis is along the x-axis. This can be parameterized by
x = a cosφ and y = b sinφ. From calculus the arc length (say for 0 ≤ φ ≤ u) is
given by

s =

∫ u

0

√

(

dx

dφ

)2

+

(

dy

dφ

)2

dφ =

∫ u

0

√

a2 sin2 φ+ b2 cos2 φ dφ

Now we let κ =
√

b2−a2

b2
, this κ is called the eccentricity of the ellipse (in analytic

geometry usually denoted by e). Then the Pythagorean identity gives b2 cos2 φ =
b2−b2 sin2 so a2 sin2 φ+b2 cos2 φ = a2 sin2 φ+(b2−b2 sin2 φ) = b2+(a2−b2) sinφ =
a2(1− b2−a2

b2
sin2 φ) = b2(1− κ2 sin2 φ). Hence the integral for arc length becomes

s = b

∫ u

0

√

1− κ2 sin2 φ dφ
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But this was not a function that they knew how to integrate.
Another class of integrals that seemed intractible using the standard functions

of calculus were integrals of the form
∫

S + T
√
Y

U + V
√
Y
dx

where S, T, U, V are rational functions of x and Y is a polynomial in x of degree
three or four. A. Legendre gave the first systematic study of these integrals and
showed that they could be expressed as sums of standard integrals and integrals
of the form

F =

∫

dx
√

(1− x2)(1− κ2x2)

E =

∫

√

1− κ2x2

1− x2
dx

Π =

∫

dx

(1− ηx2)
√

(1− x2)(1− κ2x2)

for appropriate constants η, κ.
A simple trigonometric substitution gives

F =

∫

du
√

1− κ2 sin2 u

E =

∫

√

1− κ2 sin2 u du

Π =

∫

du

(1 + η sin2 u)
√

1− κ2 sin2 u

We note that the trigonometric form of E is just the indefinite form of the
integral for the arc length of the ellipse. Perhaps this is the reason that the name
“elliptic” came to be used. In any case the integrals F,E,Π became known as
“Legendre’s canonical incomplete elliptic integrals of the first, second and third
kinds” respectively.

It turns out that for the development of elliptic functions that the Legendre
integral of the first kind, which appears to have little to do with the ellipse, played
the major role. It was Abel who suggested that in the integral of the first kind

t = F (φ) =

∫ φ

0

du
√

1− κ2 sin2 u
(6.1)
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one should look at not the function t = F (φ) but rather the inverse function which
would give φ as a function of t. This, he asserted would be the more interesting
function to study. For example, he noted, that if κ = 0 in the non-trigonometric
form of this integral one has

t =

∫ φ

0

dx√
1− x2

= sin−1 φ

which has inverse function φ = sin t.
From this idea mathematicians such as Liouville, Jacobi, Weierstrass and Rie-

mann were able, over the course of the 19th century, to build an elaborate theory
of elliptic functions and to connect this theory back to the geometric properties of
the curve Y , or more precisely, the curves y2 = f(x) where f(x) is a polynomial
of degree 3 or 4.

By the Fundamental Theorem of Calculus differentiating both sides of (6.1)
with respect to φ gives

dt

dφ
=

1
√

1− κ2 sin2 φ

We want the inverse function. But the derivative of the inverse function is just
the reciprocal of the derivative (but evaluated at a different place, of course). So
from this and the fact that t = 0 when φ = 0 we arrive at the differential equation
for the inverse function:

dφ

dt
=

√

1− κ2 sin2 φ, φ(0) = 0

This will be our starting point for the development of the Jacobi elliptic functions.

6.3 The Jacobi Elliptic Functions

Based on the discussion in the preceeding section, we set κ so that 0 ≤ κ < 1.
The functions we define in this section all depend on the choice of κ but, to
avoid unecessarily confusing notation, we will not specifically use κ as part of
the notation. Using the previous section as motivation, we now make the key
definition.

Definition 6.3.1 The function φ = φ(t) is the solution of the following differen-

tial equation:

dφ

dt
=

√

1− κ2 sin2 φ, φ(0) = 0 (6.2)
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Figure 6.1: The function φ or am

Using theorems of Differential Equations one can show that this function exists,
is defined for all real t and, by an easy argument, that this definition gives a
unique function φ(t). This function is known as the “amplitude” function and is
sometimes denoted by am(t). While this is for us a new function, not expressible in
terms of the functions we already know, it is easily computed or graphed from the
defining differential equation. Basically, for κ small the function φ is essentially
the identity function, i.e. the linear function with slope 1 and intercept 0. As κ
gets close to 1 then the function φ grows more slowly in sort of a wavy fashion.
Figure 6.1 gives some examples.

You can use Maple or even the Differential Equation Solver on the TI-85 to
graph this function. Because it is such a smooth function the differential equation
is very easy to solve numerically. Here is one simple method that works well if you
want to find actual values of the function – the Runge-Kutta Midpoint Method.
It can be implemented in MAPLE, MATLAB, the TI-85 etc. I will show below
that φ is “quasi periodic”, i.e. locally repeats itself up to a constant, and as the
functions that will be defined in terms of φ will be periodic it is enough to know
φ(t) for relatively small positive values of t.

Algorithm 1 To calculate φ(t) for some t > 0. Choose integer n so that n ≥ 10t
and let h = t/n ≤ 0.1 which will be a sufficiently small increment. Define the

function f(x) =
√

1− κ2 sin2 x and create a sequence y0, y1, . . . , yn recursively by

y0 = 0

yj+1 = yj + hf(yj +
h

2
f(yj))

Then φ(t) = yn Note you also have calculated φ(jh) = yj for j = 1, . . . , n. Note
also that the formula is not a misprint, there are nested evaluations of f .
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We can now define the main objects of this chapter:

Definition 6.3.2 Assume κ has been given, 0 ≤ κ < 1. Then the Jacobi elliptic

functions sn, cn and dn are defined by

sn(t) = sinφ(t)

cn(t) = cosφ(t)

dn(t) =
√

1− κ2 sin2 φ(t) =
√

1− κ2sn2(t)

It is traditional to pronounce these by pronouncing the separate letters, for
example sn(t) is pronounced “s n t”

When κ = 0 then φ(t) = t so sn, cn are just the usual trigonometric sine and
cosine and dn is the constant 1 function. For small κ sn and cn are only slight
deformations, basically a stretching, of the sine and cosine functions. By small κ
we mean κ < 0.6 or so. As κ increases the deformations become more pronounced
and dn approaches cn. In the limit as κ goes to 1, cn and dn approach sech, the
hyperbolic secant, while sn approaches the hyperbolic tangent.

The author has a Java applet on his web site that you can use to see how the
shape of these functions varies with κ.

Like the trignonometric functions, the elliptic functions satisfy several identi-
ties. For example the basic ones are

cn2 + sn2 = 1

dn2 + κ2sn2 = 1

dn2 − κ2cn2 = κ̆2

where κ̆ is the complementary modulus defined by

κ2 + κ̆2 = 1

Although, as explained in the previous section, the Jacobi Elliptic functions
have little to do with the ellipse it is instructive to note that they can be used to
parameterize the ellipse, similar to the trigonometric functions. Again consider
the ellipse

x2

a2
+

y2

b2
= 1

with 0 < b < a and eccentricity κ =
√

a2−b2

a2
. Then x = acn(t), y = bsn(t) is a

parameterization of the ellipse by the first identity above. Note carefully, however,
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Figure 6.2: The Jacobi elliptic functions κ = .866

that t is not the angle nor is this a unit speed parameterization. However it is
instructive to note that the distance from the point (acn(t), bsn(t)) is

√

(acn(t))2 + (bsn(t))2 =
√

a2 − a2sn2(t) + b2sn2(t) =
√

a2(1−
(

a2 − b2

a2

)

sn2(t) = a
√

1− κ2sn2(t) = adn(t)

Thus adn plays the role of the constant radius r for the circular functions. In
fact adn varies between a and b for this κ.

Like the trigonometric functions we can form new functions by forming recip-
rocals or quotients of the original functions. Traditionally 1

cn
is denoted nc, 1/sn

is ns and 1/dn by nd. It is allowable to write sn
cn

as sc but, in analogy with the
tangent, it is usually written tn and cn/sn is written ctn. The mathematician
Clifford went so far as to suggest a similar method of denoting the hyperbolic and
circular functions, writing sinh, cosh and tanh as sh, ch and th respectively and
just c, s and t for the cosine, sine and tangent. The hyperbolic secant could be
hc but what would we use for the secant? Needless to say, this notation did not
catch on.

As mentioned above, φ is quasi-periodic. This follows directly from the defining
differential equation dφ

dt
=
√

1− κ2 sin2 φ. First of all since the square root is
always positive (we assume κ < 1) φ is an increasing function with derivative
bounded below by κ̆ =

√
1− κ2 > 0. Thus as t → ∞ we have φ(t) → ∞. By the

intermediate value theorem we have some number 2K > 0 so that φ(2K) = π.
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But sin2 x is periodic of period π so the differential equation

dφ

dt
=
√

1− κ2 sin2(φ+ π), φ(0) = π

is identical to the original equation except for initial value. Thus the differece
between the two solutions is is the constant π. Of course, it then follows that
φ(4K) = 2π, and so on. So specifically, what quasi-periodic means here is that if
t = 2nK + x where 0 ≤ x < 2K then φ(t) = φ(x) + nπ.

It follows immediately from the last paragraph that cn and sn are periodic of
period 4K since sine and cosine are periodic of period 2π while dn is periodic of
period 2K since it is a function of sin2 which is periodic of period π.

The question remains, what is K? By taking the reciprocal of both sides of
the defining differential equation (or returning to the motivation in the previous
section) we have

dt

dφ
=

1
√

1− κ2 sin2 φ

where now t is the inverse function of φ. But this equation is easily integrated
from

dt =
1

√

1− κ2 sin2 φ
dφ

giving

t =

∫ φ

0

1
√

1− κ2 sin2 x
dx

Substituting π for φ would give t = 2K but exploiting the symmetry of the
integrand it is evident that this is twice the integral

K =

∫ π/2

0

1
√

1− κ2 sin2 x
dx (6.3)

The latter integral is known as “Legendre’s complete elliptic integral of the
first kind” and is implemented under the name

LegendreKc(κ)

in MAPLE. Actually, MAPLE’s LegendreF(x, κ) is the inverse function of sn so
also K = LegendreF(1, κ).
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As an example, when κ = .866 ≈
√
3
2

then K ≈ 2.1565 so, as shown in Figure
2, the period of cn and sn is 4k ≈ 8.6261, while dn has period 4.3130. Note that as
κ approaches 1 the period approaches infinity and, in fact, the limiting functions
sech and tanh are not periodic.

We end this section by calculating the derivatives of the Jacobi Elliptic func-
tions. The defining differential equation tells us that the derivative dφ

dt
= dn(t)

(compare definitions) so a simple application of the chain rule gives

dcn(t)

dt
=

d cos(φ(t))

dt
= − sin(φ(t))

dφ(t)

dt
= −sn(t)dn(t)

dsn(t)

dt
=

d sin(φ(t))

dt
= cos(φ(t))

dφ(t)

dt
= cn(t)dn(t)

Again we see that when κ = 0 the special case is just the usual trigonometric
cosine and sine since dn is then the constant 1. For dn we get

ddn(t)

dt
=

d

dt

√

1− κ2 sin2 φ(t) =
1

2
√

1− κ2 sin2 φ(t)

d(1− κ2 sin2 φ(t))

dt
=

1

2
√

1− κ2 sin2 φ(t)
(−2κ2 sinφ(t) cosφ(t))

dφ(t)

dt
= −κ2sn(t)cn(t)

dn(t)
dn(t) =

− κ2sn(t)cn(t)

And for the elliptic tangent tn = sn
cn

we have

dtn(t)

dt
=

d

dt

sn(t)

cn(t)
=

cn(t)dn(t)cn(t)− sn(t)(−sn(t)dn(t)

cn2(t)
=

(cn2(t) + sn2(t))dn(t)

cn2(t)
=

dn(t)

cn2(t)

6.4 The inverse Jacobi Elliptic Functions

Since the Jacobi elliptic functions arose as inverses of some integrals, it is the
original integrals, that is the inverses of the Jacobi functions, that we are most
interested in.

As usual, assume the modulus κ has been set, κ̆ is the complementary modulus
and K is given by (6.3). The domain and range for the inverse elliptic functions
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is motivated by Figure 6.2 and the discussion on the quasi-periodicity of φ. The
domain for the inverse functions sn−1(x) and cn−1(x) is −1 ≤ x ≤ 1 which is the
range of sn and cn. Since sn and dn are not 1–1 functions we have to arbitrarily
choose a range, we will choose −K ≤ sn−1(x) ≤ K and 0 ≤ cn(x) ≤ 2K. For dn−1

we have domain κ̆ ≤ x ≤ 1 and will arbitrarily choose range 0 ≤ dn−1(x) ≤ K.
Finally tn−1 will have the entire real line as domain but range −K < tn1 < K.

What we want to find are the differentiation formulas for these functions. Our
tools will be the basic identities

cn2(t) + sn2(t) = 1 (6.4)

dn2(t) + κ2sn2(t) = 1 (6.5)

dn2(t)− κ2cn2(t) = κ̆2 (6.6)

and the differentiation formulas

dcn(t)

dt
= −sn(t)dn(t) (6.7)

dsn(t)

dt
= cn(t)dn(t) (6.8)

ddn(t)

dt
= −κ2sn(t)cn(t) (6.9)

dtn(t)

dt
=

dn(t)

cn2(t)
(6.10)

I will calculate dcn−1(x)
dx

to illustrate the method. I first set x = cn(t) so that
t = cn−1(x) The trick is to calculate sn(t) and dn(t) in terms of x. To this end
formula (6.4) gives sn2(t) + x2 = 1 so sn2(t) = 1− x2 or sn(t) =

√
1− x2 Likewise

(6.6) gives dn2(t) − κ2x2 = κ̆2 so dn(t) =
√
κ̆2 + κ2x2. Now from formula (6.7)

above dcn(t)
dt

= −sn(t)dn(t) = −
√
1− x2

√
κ̆2 + κ2x2. Taking the reciprocal of both

sides we get
dcn−1(x)

dx
=

dt

dx
=

−1
√

(κ̆2 + κ2x2)(1− x2)
.

Exercise 2 Using the technique above verify the following formulas:

a)
dsn−1(x)

dx
=

1
√

(1− κ2x2)(1− x2)
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b)
ddn−1(x)

dx
=

−1
√

(1− x2)(x2 − κ̆2)

c)
dtn−1(x)

dx
=

1
√

(1 + x2)(1 + κ̆2x2)

Hint for c): This is tricky as you have to figure out how to find dn(t) and cn(t) in
terms of x = tn(t).

With the inverse trigonometric functions, if you know one you can calculate
the others. This is true also of the inverse elliptic functions. There are several
reasons why this is useful. One is that you may have access to only one. For
example MAPLE implements the function

sn−1(x) = LegendreF(x, κ)

for 0 ≤ x ≤ 1 and modulus κ. It does not implement the other inverse elliptic
functions. Thus one way to find, say, dn−1(x) would be to use the formula (derived

below) dn−1(x) = sn−1

(

√

1−x2

κ2

)

. Of course, another way to solve this problem

is to integrate numerically the derivative of dn−1 above – see the next section.
A more important reason for conversion is that sometimes formulas obtained

using one inverse function have a much nicer form using another. Finally, one
may need to do a calculation such as

sn(dn−1(x)) = sn
(

sn−1

(

√

1− x2

κ2

))

=

√

1− x2

κ2

The formula dn−1(x) = sn−1

(

√

1−x2

κ2

)

mentioned above may be derived as

follows: Write dn−1(x) = t so that dn(t) = x. From formula (6.5) we have

x2 + κ2sn2(t) = 1 so sn(t) =
√

1−x2

κ2 Then applying sn−1 to both sides we have

dn−1(x) = t = sn−1

(

√

1− x2

κ2

)

Exercise 3 Verify the following conversions:

a) sn−1(x) = cn−1(
√
1− x2) = dn−1(

√
1− κ2x2)
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b) cn−1(x) = sn−1(
√
1− x2) = dn−1(

√
κ̆2 + κ2x2)

c) dn−1(x) = sn−1

(

√

1−x2

κ2

)

= cn−1

(

√

κ̆2−x2

κ2

)

The following are a bit harder:

d) Express the inverse functions above in terms of tn−1

e) Express tn−1(x) in terms of the other 3 inverse elliptic functions.

6.5 Elliptic Integrals

In this section we will use more or less traditional techniques of integration to
show that all integrals of the form

∫

f(x)−
1

2 dx where f(x) is a cubic or biquadratic
polynomial can be expressed in terms of the Jacobi elliptic functions.

The formulas in the previous section for the derivatives of the inverse Jacobi
elliptic functions immediately give us the following indefinite integration formulas:

∫

dx
√

(1− κ2x2)(1− x2)
= sn−1(x) + C (6.11)

∫ −dx
√

(κ̆2 + κ2x2)(1− x2)
= cn−1(x) + C (6.12)

∫ −dx
√

(1− x2)(x2 − κ̆2)
= dn−1(x) + C (6.13)

∫

dx
√

(1 + x2)(1 + κ̆2x2)
= tn−1(x) + C (6.14)

These formulas are valid where both sides make sense.
The quartics here are all even (symmetric about the y-axis). One can use a

change of variables and appropriate choice of κ to derive other integrals of even
quartics. Alternatively, given the formula it can be verified by differentiating both
sides.

Example 6.5.1 To verify the formula (for a > b > x)
∫

dx
√

(a2 − x2)(b2 − x2)
=

1

a
sn−1(

x

b
) + C, κ =

b

a
(6.15)
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one differentiates the right hand side

d

dx

1

a
sn−1(

x

b
) =

1
√

(1− ( b
a
)2(x

b
)2)(1− (x

b
)2)

1

b
=

1
√

a2(1− x2

a2
)(1− x2

b2
)b2

=
1

√

(a2 − x2)(b2 − x2)

Exercise 4 Verify the following integration formulas by differentiating the right
hand side. If you are more ambitious you might try doing these by substitution.
Indicate the restrictions on a, b and x.

∫

dx
√

(a2 + x2)(b2 − x2)
=

−1√
a2 + b2

cn−1
(x

b

)

+ C, κ =
b√

a2 + b2
(6.16)

∫

dx
√

(a2 + x2)(x2 − b2)
=

1√
a2 + b2

cn−1

(

b

x

)

+ C, κ =
a√

a2 + b2
(6.17)

∫

dx
√

(a2 − x2)(x2 − b2)
=

−1

a
dn−1

(x

a

)

+ C, κ =

√

1− b2

a2
(6.18)

∫

dx
√

(x2 + a2)(x2 + b2)
=

1

a
tn−1

(x

b

)

+ C, κ =

√

1− b2

a2
(6.19)

Exercise 5 Using the Jacobi elliptic functions, find the indefinite integral
∫

dx√
x4 − 1

for x > 1

So far the integrands have involved biquadratics. But notice what happens
with the following differentiation:

d

dx
2sn−1(

√
x) =

2
√

(1− κ2
√
x
2
)(1−√

x
2
)

(

1

2
√
x

)

=
1

√

x(1− κ2x)(1− x)

A similar differentiation (see the next exercise) gives

∫

dx
√

(x− α)(x− β)(x− γ)
=

2√
α− γ

sn−1

(√

α− γ

x− γ

)

κ =

√

β − γ

α− γ
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for x > α > β > γ. Here we might wish for a different domain for x. If α > x > β
or γ > x then (x− α)(x− β)(x− γ) would be negative so the integral would not
make sense (as a real integral) but we could do

∫

dx
√

−(x− α)(x− β)(x− γ)

instead. When β > x > γ the original integral makes sense but
√

α−γ
x−γ

> 1 so

is not in the domain of sn−1. Thus, we find, to completely give the integration
formulas when f(x) is a cubic with three real roots we need to give not just one
formula but at least four. These formulas will be checked in the following exercise.

Exercise 6 Assume α > β > γ are three distinct real numbers. Let κ0 =
√

β−γ
α−γ

Show that

κ̆0 =

√

α− β

α− γ

Now verify the following formulas:
∫

dx
√

(x− α)(x− β)(x− γ)
=

2√
α− γ

sn−1

(√

x− α

x− β

)

+ C, κ = κ0 (6.20)

when x > α
∫

dx
√

−(x− α)(x− β)(x− γ)
=

−2√
α− γ

sn−1

(√

α− x

α− β

)

+ C, κ = κ̆0 (6.21)

when α > x > β

∫

dx
√

(x− α)(x− β)(x− γ)
=

2√
α− γ

sn−1

(√

x− γ

β − γ

)

+ C, κ = κ0 (6.22)

when β > x > γ

∫

dx
√

−(x− α)(x− β)(x− γ)
=

2√
α− γ

sn−1

(
√

α− γ

α− x

)

+ C κ = κ̆0 (6.23)

when γ > x
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It should be noted that because the formula depends on the location of x
that MAPLE will not give indefinite forms of elliptic integrals. It will however
give exact formulas for definite elliptic integrals in terms of the LegendreF

function (which, as we have noted is sn−1). But you are aware that there are
many equivalent formulas for a definite integral so you won’t be surprised when
you do not recognize MAPLE’s results. MAPLE uses a different approach to these
integrals.

We also remark that if two (or more)roots are equal then this integral reduces
to a standard integral. For example if α = β > γ then for x > α we have

∫

dx
√

(x− α)(x− β)(x− γ)
=

∫

dx

(x− α)
√
x− γ

=
−2√
α− γ

sinh−1

(
√

α− γ

x− α

)

These cases are known as “degenerate” cases. There are many such cases.

The exercise above shows how to find indefinite integrals of the form
∫

f(x)−
1

2 dx
for all cubics f(x) with distinct real roots. We will show how to derive the inte-
grals for general cubics or biquadratics f(x) from this, except in degenerate cases
which can be handled by standard integration techniques. But first we need a
result on rational functions.

Let N = N(x) = ax2+bx+c be a quadratic with no real roots, i.e. b2−4ac < 0.
LetD = D(x) be any linear or quadratic function. Now let y = y(x) = N(x)/D(x)
be the quotient. We first note by algebra that y′ = N ′D−ND′

D2 almost always has
a quadratic numerator: in the case D is quadratic the cubic terms cancel, in
the other case there are no cubic terms. In neither case would we expect the
quadratic term to cancel. Now when D is quadratic the graph of y = y(x) has
a non-zero horizontal asymptote, no zeros and no vertical asymptotes or two of
them. When D is linear then there is an oblique asymptote, no zeros and one
vertical asymptote. Typical graphs appear in Figure 6.3. In each case it is seen
that there must be at least one critical point, usually two. Thus the numerator
of y′ factors over the reals, usually as γ(x − x1)(x − x2) where γ is a constant
and x1, x2 are distinct real numbers. Now let yj = y(xj), j = 0, 1. Again, by
inspection of the graphs the functions y − yj should have exactly one real zero at
x = xj. Thus we expect

y − y1 =
α(x− x1)

2

D
and y − y2 =

β(x− x2)
2

D
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Figure 6.3: Possibilities for y = N
D

for real constants α, β. It then follows that

y′ =
γ(x− x1)(x− x2)

D2
=

γ
√

|αβ|D
±
√

|α|(x− x1)√
D

±
√

|β|(x− x2)√
D

=

=
γ

√

|αβ|D

√

±α(x− x1)2

D

√

±β(x− x2)2

D
= M

√

±(y − y1)(y − y2)

D

where M = γ√
|αβ|

is a real constant. We have:

Lemma 6.5.2 Let y = N(x)/D(x) be a rational function where the numerator is

a quadratic with no real roots and the denominator is linear or quadratic. Then,

except in degenerate cases, there exist distinct real numbers y1, y2 and a real con-

stant M so that

y′ = M

√

±(y − y1)(y − y2)

D

Actually this is more a definition than a lemma since by “degenerate cases”
we mean those where the conclusion is false. Thus this Lemma really says that
the conclusion is true except when it isn’t and those cases we call degenerate. But
the paragraph previous to the Lemma shows that we should expect the conclusion
to be true most of the time.

We can now complete the calculation of integrals of the form
∫

f(x)−
1

2 dx Let
f(x) be a cubic or biquadratic polynomial with real coefficients. By D’Alembert’s
Theorem (Thm 1.9.9) f(x) can be factored over the reals into a product of linear
and irreducible quadratic polynomials. Recall that a quadratic is irreducible over
the reals if it has no real roots.
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We now treat the case that f(x) has an irreducible quadratic factor N(x).
Then f(x) = N(x)D(x) where D is linear or quadratic, possibly reducible. We
use the change of variables y = N

D
. By the Lemma above, except in degenerate

cases, dy
dx

= C

√
±(y−y1)(y−y2)

D
so

dx =
1

M

D
√

±(y − y1)(y − y2)
dy

Then
∫

dx
√

f(x)
=

∫

dx
√

DN
D

=

∫

dx

D
√
y
=

∫

1
M

D√
±(y−y1)(y−y2)

/, dy

D
√
y

=
1

M

∫

dy
√

±y(y − y1)(y − y2)

Thus we have reduced this calculation to the calculation of
∫

g(x)−
1

2 dx discussed
earlier, where g(x) has 3 real roots.

We have now shown how to calculate
∫

f(x)−
1

2 dx for all cubic f(x) and some
biquadratics. In fact, the only non-degerate case left is when f(x) has four distinct

real roots. It can be shown that these integrals all have the form Msn−1
(√

ax+b
cx+d

)

for suitable constants a, b, c, d,M and κ depending on the interval of integration.
However we would like to show that, as in the previous biquadratic with irreducible
quadratic factor case , this case also reduces to the cubic case. So then, all the
biquadratic non-degenerate cases reduce to the cubic case.

More generally, suppose f(x) is a quartic with at least one real root α. Then,
over the reals, f(x) = (x − a)g(x) where g(x) is a real cubic. We make the
substitution y = 1/(x− α) or (x− α) = 1/y which gives x = 1/y + α So

dx =
−1

y2
dy and f(x) = f

(

1 + αy

y

)

=
h(y)

y3

for some cubic polynomial h(y). Then

∫

dx
√

f(x)
=

∫ −dy
y2

√

(x− α)g(x)
=

∫ −dy

y2
√

(x− α)g(x)
=

∫ −dy
√

y4
(

1
y

)(

h(y)
y3

)

= −
∫

dy
√

h(y)
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as desired.
We are now left with only the degenerate cases. Most are handled by standard

integration techniques, (see Exercise 1) but a few, such as
∫

dx
√

(x2 + a2)(x2 + b2)

have been already handled in Exercise 3. The ambitious reader can chase down
all these cases and verify this statement. We have thus achieved our desired goal
for the section.

Exercise 7 As with Lagrange’s method for finding the roots of a quartic, the
integration methods above are nicer in theory than in practice. In practical ex-
amples one would use numerical integration. Try to derive, or even verify, the
following:

a)
∫

dx√
x3 − 1

=
1
4
√
3
cn−1

(

x− 1−
√
3

x− 1 +
√
3

)

+ C, κ = sin
π

12

b)
∫

dx√
1− x3

=
1
4
√
3
cn−1

(√
3− 1 + x√
3 + 1− x

)

+ C, κ = sin
5π

12

Exercise 8 There are other types of integrals that can be given in terms of the
elliptic functions. Verify the following.

a)
∫

(1 + x2)−
3

4 dx =
√
2cn−1

(

(1 + x2)−
1

4

)

, κ =

√
2

2

b)
∫

κcnu du = cos−1(dnu) + C

c)
∫

κsnu du = cosh−1

(

dnu

κ̆

)

+ C

d)
∫

κsnu du = log
dnu+ κcnu

κ̆
+ C
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6.6 The Complex Theory

While interesting, the previous section is considered to have little modern im-
portance since numerical methods are obviously more convenient. But elliptic
functions do play an important role in modern Mathematics because of the very
nice properties they have as complex functions of a complex variable. In this sec-
tion we will just outline some of this theory. It will be loosely organized around
the names of the important Mathematicians who made progress in the subject.

Abel and Liouville

As mentioned earlier, Abel was the Mathematician who was largely responsible
for the key ideas on elliptic functions, although if he hadn’t had his key insights
it is likely that Gauss would have eventually published his similar ideas. The
unpleasant part of the integration of

∫

f(x)−
1

2 dx was the number of cases involved,
we had to worry about real or complex roots of f(x) and where the variables of
integration were in terms of these roots. Abel was aware that if the functions sn
and sn−1 could be treated as complex functions then many of the special cases
would be the same. Abel had an idea about what these complex functions would
look like and, in particular, realized that for 0 < κ < 1 sn, cn and dn would
be periodic not just in the real direction but also in another complex direction.
Today, any doubly periodic complex function is known as an elliptic function.

Liouville worked much of the general theory of such functions, noting that
they had a “period parallelogram”, i.e. a parallelogram in the complex plane with
vertices 0, ω1, ω3 = ω1 + ω2, ω2 such that by periodicity it is enough to know the
behavior of the function in this parallelogram to know the function over the entire
complex plane. These functions were not defined at all points for there were
isolated points known as “poles” w near which the function behaved similarly to
the function 1/(z − w)m (m is called the multiplicity). Liouville showed that the
sum of the multiplicities of the zeros in the period parallelogram was equal to
the sum of the multiplicities of the poles and that if the elliptic function was not
constant then these multiplicities added to at least 2.

Note that in the Abel-Liouville sense the trigonometric functions (κ = 0)
are not special cases of elliptic functions since as complex functions they are not
doubly periodic, for example they become unbounded in the imaginary direction,
and they have no poles.

Jacobi and Fourier

To treat the complex case Jacobi defined Theta functions (which had actually
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been described earlier by Fourier)

Θ1(z) = i
∞
∑

n=−∞
(−1)nq(n−

1

2
)2e(2n−1)πiz

Θ2(z) =
∞
∑

n=−∞
q(n−

1

2
)2e(2n−1)πiz

Θ3(z) =
∞
∑

n=−∞
qn

2

e2nπiz

Θ4(z) =
∞
∑

n=−∞
(−1)nqn

2

e2nπiz

where q = eπiτ for a fixed complex number τ with Im(τ) > 0. While the functions
Θj are not periodic they are quasi-periodic and so the quotient of any two Θj is
periodic with real period 2 and imaginary period 2τ .

In particular given 0 < κ < 1, κ̆ =
√
1− κ2 ,

K =

∫ π

2

0

dx
√

1− κ2 sin2 x
and K̆ =

∫ π

2

0

dx
√

1− κ̆2 sin2 x
(6.24)

as in section 6.3 then

sn(z) =
1√
κ

Θ1

(

z
2K

)

Θ4

(

z
2K

) (6.25)

cn(z) =

√
κ̆√
κ

Θ2

(

z
2K

)

Θ4

(

z
2K

) (6.26)

dn(z) =
√
κ̆
Θ3

(

z
2K

)

Θ4

(

z
2K

) (6.27)

The Jacobi elliptic functions are now seen to be elliptic in the sense of Abel and
Liouville. The vital statistics are given by the chart:

function real imaginary zeros poles
period period

sn(z) 4K 2iK̆ 0, 2K iK̆, 2K + iK̆

cn(z) 4K 2K + 2iK̆ K, 3K iK̆, 4K + iK̆

dn(z) 2K 4iK̆ K + iK̆ iK̆, 3iK̆
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The zeros and poles are only given for one period parallelogram, to get other
points where these functions have zeros or poles simply add multiples of the real
and/or imaginary periods. Note that all the zeros and poles are simple, i.e. have
multiplicity 1.

One application of the Θ-function approach to the Jacobi elliptic functions
is that we can get some good approximations to these functions almost without
resorting to numerical methods. For example it can be shown that if, say, 0 < κ <
.98 then q is small enough to make the series converge quickly so the following are
reasonable approximations, at least for the purpose of graphing:

sn(z) ≈ 1√
κ

2q
1

4 sin πz
2K

− 2q
9

4 sin 3πz
2K

1− 2q cos πz
K

(6.28)

cn(z) ≈
√
κ̆√
κ

2q
1

4 cos πz
2K

+ 2q
9

4 cos 3πz
2K

1− 2q cos πz
K

(6.29)

dn(z) ≈
√
κ̆
1 + 2q cos πz

K

1− 2q cos πz
K

(6.30)

Here κ, κ̆,K, K̆, τ = i K̆
K
, and q = eπiτ are as above and K, K̆ still must be calcu-

lated numerically.

These days real periodic functions are usually analyzed by Fourier series. There
are various formulations of these. Since our Jacobi Elliptic functions have different
periods for different κ we want to normalize to period 2 by multiplying the variable
by half the period. In other words, if g(x) = g(x + 2p) for all x then a Fourier
series for g is

g(px) =
∞
∑

n=0

(an cosnπx+ bn sinnπx)

Most periodic functions, even slightly discontinuous ones, have Fourier series that
converge to the function at most points. An advantage of studying the Jacobi
Elliptic Functions is that you now have some non-trivial examples to apply the
Fourier series to! Fourier series for the Jacobi Elliptic functions (where κ, κ̆,K,
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and q are as above) are given by:

sn(2Kx) =
2π

Kκ

∞
∑

n=0

qn+
1

2

1− q2n+1
sin(2n+ 1)πx (6.31)

cn(2Kx) =
2π

Kκ

∞
∑

n=0

qn+
1

2

1 + q2n+1
cos(2n+ 1)πx (6.32)

dn(2Kx) =
π

2K
+

2π

K

∞
∑

n=0

qn

1 + q2n
cos 2nπx (6.33)

Weierstrass

Weierstrass was perhaps partially motivated by wanting to simplify the inte-
gration techiques for

∫

f(x)−
1

2 dx discussed in the previous section by eliminating
all the special cases. He knew that if f(x) was a biquadratic the problem could
be reduced to the cubic case. Moreover, linear changes of variables are not in-
teresting, so as in the Cardano-Viete solution of the cubic in Section 4.4, one
can perform a linear change of variables to eliminate the x2 term of the cubic.
Weierstrass’ form is slightly different: his typical cubic is g(x) = 4x3 − g2x− g3.

Weierstrass then was able to find an elliptic (in the sense of Abel and Liouville)
function ℘(z) (depending on parameters g2, g3) such that an inverse function (with
appropriate range) would satisfy

℘−1(x) =

∫ ∞

x

du
√

4u3 − g2u− g3
(6.34)

Using our integration formulas of the previous section we can actually calculate
℘−1(x) in one case, mainly where g(x) has 3 distinct real roots. So suppose
g(x) = 4(x− α)(x− β)(x− γ) where α > β > γ. As in Exercise 6 let

κ0 =

√

β − γ

α− γ
so κ̆0 =

√

α− β

α− γ

and let K, K̆ be defined as in equation (6.24) for κ = κ0.
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When x > α then

℘−1(x) =

∫ ∞

x

du
√

g(u)
=

∫ ∞

x

du

2
√

(u− α)(u− β)(u− γ)
=

lim
u→∞

1√
α− γ

sn−1

(√

u− α

u− β

)

− 1√
α− γ

sn−1

(√

x− α

x− β

)

=

K√
α− γ

− 1√
α− γ

sn−1

(√

x− α

x− β

)

since limu→∞
u−α
u−β

= 1 and sn−1(1) = K since κ = κ0. Weierstrass denotes ω1/2 =
K√
α−γ

which will be the real half period of ℘. Thus we note from this formula that

as we start from x = ∞ and go down to x = α then ℘−1 monotonically takes real
values from 0 to ω1/2.

When α > x > β then g(x) is negative but Weierstrass is allowing complex
values so

√

g(x) = ±i
√

−g(x) with the choice of sign somewhat arbitrary. But
Weierstrass wants us to chose the positive so that 1√

g(x)
= −i√

−g(x)
. Then

∫ ∞

x

du
√

g(u)
=

∫ α

x

du
√

g(u)
+

∫ ∞

α

du
√

g(u)
= (−i)

∫ α

x

du
√

−g(u)
+

ω1

2
=

ω1

2
− −i√

α− γ

[

sn−1

(√

α− x

α− β

)

− sn−1

(√

α− α

α− β

)]

=

ω1

2
+

i√
α− β

sn−1

(√

α− x

α− β

)

Here κ = κ̆0 so when x = β in the last term we get

i√
α− β

sn−1

(
√

α− β

α− β

)

=
i√

α− β
sn−1(1) =

iK̆√
α− β

which Weierstrass calls ω2/2. Thus we see that as x decreases from α to β then
℘−1(x) travels parallel to the y-axis from ω1/2 to ω1/2 + ω2/2 = ω3/2

We will let the reader apply the last two formulas of Exercise 6 in a similar
fashion to show that as x goes down from β to γ then ℘−1(x) goes in the positive
real direction to ω1 + ω2/2. And finally, as x decreases from γ to −∞ then ℘−1

moves upwards in the imaginary direction to ω1 + ω2 = ω3

Incidentally, we have shown that
∫ ∞

−∞

dx
√

g(x)
= ω3
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✛
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✛

✲

✲

✲
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❄
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❄

℘(0) = +∞

℘(ω2

2
) = γ

℘(ω2) =pole

℘(ω3

2
) = β ℘(ω1 +

ω2

2
) = γ

℘(ω1) =pole

℘(ω3) = −∞

℘(ω1

2
) = α

℘(ω1

2
+ ω2) = α

Figure 6.4: The period parallelogram for ℘

but because we have made choices it is not clear what this actually means.

But we can now get a good idea of how ℘ works by inverting our calculation
of ℘−1. For one thing, we have shown that ℘(ω1/2) = α, ℘(ω3/2) = β and
℘(ω2/2) = γ. Further ℘(0) and ℘(ω3) are various flavors of infinity which really
means that ℘ has poles at those points. (It is generally understood that there
is just one value of infinity for the complex plane, anyway.) Also we see that ℘
takes monotonically decreasing real values on the piecewise linear path from ω3 to
ω1 + ω2/2 to ω3/2 to ω1/2 to 0, and on that route ℘(z) takes on every real value
exactly once.

If we add to this the facts that ℘ is periodic with periods ω1 and ω2 and that
℘ is even (i.e. ℘(z) = ℘(−z) for all complex z), we must take Weierstrass’ word
on this, we can fill in more information on the period parallelogram. For example,
to see how ℘ behaves on the interval from ω2/2 to ω3/2 we can take the interval
from ω3/2 to ω1 + ω2/2 and subtract ω3 which is the sum of the two periods. We
then get by periodicity that on the interval from −ω3/2 to −ω2/2 ℘ behaves the
same as on the former interval. But by the even property we get the behavior
on the interval we wanted, mainly ℘(z) is real and increasing from γ to β on the
interval from ω2/2 to ω3/2.

Figure 6.4 now summarizes what we now know about ℘ on the period paral-
lelogram. On the indicated lines ℘(z) is real and the arrows give the direction in
which ℘(z) is increasing. Note the heavy line is the path on which we implicitly
calculated ℘(z) by integration. We have poles at the corners and, from the con-
siderations of Section 4.8, since g(x) has coefficient 0 for the quadratic term and
hence α + β + γ = 0, we conclude that we have one zero that lies either on the
segment from ω1/2 to ω3/2 or on the segment from ω3/2 to ω1+ω2/2. Since those
two segments are mirrored by the other two interior segments we must have one
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Figure 6.5: How to make a Torus

addional zero on one of them, unless it happens that β = 0 in which case we have
a zero of multiplicity 2. On the rectangle, ℘ takes on the values α, γ at two points
but ℘(z) = β only at z = ω3/2. Finally, although we haven’t proved it, ℘(z) takes
imaginary values on the interior of the rectangles.

Weierstrass now does something that you may find strange. He cuts out the
period parallelogram and rolls it into a cylinder by gluing the segment 0 to ω1 to
the segment ω2 to ω3. Then he curves this around so he can glue segment 0 to ω2

to the segment ω1 to ω3. He obtains a torus. See Figure 6.5.

Because of the double periodicity the points Weierstrass has glued together
take the same value under ℘ so Weierstrass has a well defined function from the
torus to the complex plane. Since the point ω1/2 has been glued to ω1/2+ω2 now
℘(z) = α for only one point, similar to the case for β. The same applies also to γ.
With the other gluing we find that each of the other real values is attained twice
(not 4 times).

Weierstrass has more up his sleeve (perhaps literally, the history books tell us
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that he often wrote on his sleeves when he had an urgent idea that couldn’t wait
for him to find paper). The derivative ℘′(z) is also doubly periodic (this should
be obvious). Writing z = ℘−1(x) (or ℘(z) = x) we find that

dz

dx
=

d

dz

∫ ∞

x

du
√

g(u)
=

−1
√

g(x)

by the Fundamental Theorem of Calculus. Taking reciprocals we have

℘′(z) =
d℘

dz
= −

√

g(x)

Thus letting y = ℘′(z) we have the equation y2 = g(x). Of course we have only
shown that this works on our path, but in fact this works everywhere on the
period parallelogram (or torus!) as long as we take x = ℘(z). Weierstrass now
has a function z → (x, y) = (℘(z), ℘′(z)) from the torus to the cartesian product
of the complex plane with itself (more precisely, to the complex projective plane).
One technicality is that he must choose which of the two square roots of g(x)
to take in order to have y well defined. Fortunately he can do this and in fact
in such a way that each choice is made exactly once. That is possible since ℘
attains each x value twice except for x = α, β or γ and there since g(x) = 0 no
choice need be made! What Weierstrass has done is that he has described a 1-1

correspondance between the points on the torus and the complex solution set of the

equation y2 = g(x). We have only outlined this in the case when g(x) has three
distinct real solutions but in fact it works for any g(x) (even with complex g2, g3)
as long as the roots are distinct. Even this is easy to test as this requires, by
Section 4.8, the discriminant ∆ = 4(g32 − 27g23) 6= 0

Thus Weierstrass set out to calculate some integrals but on the way discovered
geometrically what the complex solution set of the algebraic equation y2 = 4x3 −
g2x−g3 looks like. It looks like a torus. Because this solution set is parameterized
by elliptic functions, the algebraic curves

y2 = 4x3 − g2x− g3, g32 − 27g23 6= 0

have since been known as “elliptic curves” even though they don’t look anything
like ellipses.

Riemann and later

This changed everything. Mathematicians no longer thought of elliptic func-
tions in terms of integrals but in terms of their applications to geometry. To be
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completely historically correct the credit does not go to Weierstrass alone, even
Abel had to some extent anticipated this development, and though more difficult,
the same result can be derived using Θ-functions. But certainly Weierstrass had
given the most elegant formulation.

Riemann took the next step by his invention of Riemann Surfaces. He was
able to deal with curves of higher degree and also higher dimensional geometry.
His work, in large part motivated by the recent results on elliptic functions and
curves, led to the formation of the fields of differential geometry and topology.
After Weierstrass pointed out a gap in some of Riemann’s work resulting from
some technical problems in analysis, Clebsch reworked some of Riemann’s results
starting from the point of view of the curve and using abstract algebra rather than
geometry. This work, carried on by his pupil Max Noether, led to the modern
formulation of the field of algebraic geometry.

But now elliptic curves and functions, freed from analysis, could be applied
to number theory. This is where most of the modern interest in these ideas lies.
In fact, Andrew Wiles recent proof the Fermat Conjecture was simply a sidlight
of his studies of elliptic curves over number fields. Other areas in which elliptic
curves have been recently used is in factoring methods and encryption methods
for secure internet transmissions.

Elliptic curves and functions are considered some of the most advanced and
difficult areas of mathematics today. New progress is being made. But it all
started with some mundane integration problems.


