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It has always amazed me how the most abstract ideas in mathematics have been applied to
the art of counting things. Examples that come to mind in commutative algebra include Reisner’s
use of Cohen Macaulay rings to count faces of sphere triangulations and the use of Hochschild
homology by Bayer and Diaconis to solve problems in card shuffling. It has never been clear to me
whether this is because underneath all our abstractions, mathematics really is just about counting
things or whether this phenomenon is merely due to the large egos of combinatorists – they want
us tothink mathematics is about counting things.

In this note I explore some more connections between commutative algebra and counting tech-
niques. These connections lend credence to my latter supposition, for this connection has appar-
ently led to no new combinatorics, all the formulas about necklaces were well known long before,
and the thrust of the published papers [8, 5, 6] seems to be that somehow the combinatorics im-
proves the algebra, an idea of which I am skeptical. In this note I take an opposite point of view
from [8], I assume the algebra is reasonably familiar and derive the combinatorics from the algebra.

1 Witt Vectors

The preceding ideas can be axiomitized by the modern idea of (big) Witt vectors. It is generally
accepted that these Witt vectors made their official debut inthe paper by Cartier [4] even though
they appear to have been discovered much earlier by E. Witt, for instance they had previously
appeared in print in the form of a series of exercises in S. Lang’s textbook [7].

LetR be a commutative ring with unit, which I will view as a commutative Z-algebra. As a set
we defineW (R) to be the set of unitary power series inR, i.eW (R) = {a(t) = 1 + a1t+ a2t

2 +
· · · ∈ R[[t]]}. The addition inW (R) will be the usual multiplication of power series. I will use
the usual multiplicative notation, so that fora(t), b(t) ∈ W (R), a(t)b(t) is the “sum”, a(t)

b(t)
is the

“difference”, and in an expression such as(1− t)r, r is the “coefficient”.
Central to our discussion is theghost map. This is the mapW (R) → tR[[t]] given by

gh(a) = −t
a′(t)

a(t)
=

d

dt
log a(t)
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If gh(a(t)) = f1t + f2t
2 + · · · we call fi the ith ghost component ofa or ghi(a). I think it is

useful to recognize that the connection between the components ofa(t) ∈ W (R) and the ghost
components is given by the classicalNewton’s Identities.

fn + fn−1a1 + fn−2a2 + · · ·+ f1an−1 + nan = 0 (1)

The ghost map is a homomorphism of the additve groups ofW (R) andtR[[t]], but rather than
viewing tR[[t]] as an ideal ofR[[t]] I will view it as the product

∏∞
i=1R via the mapf1t + f2t

2 +
· · · 7→ (f1, f2, f3, . . .) and thus addition is the same but multiplication is given by

(f1t+ f2t
2 + · · · ) ∗ (g1t+ g2t

2 + · · · ) = (f1g1)t+ (f2g2)t
2 + · · · (2)

If R has noZ-torsion (i.e.nr = 0 impliesr = 0 for n ∈ Z, n 6= 0, r ∈ R) then it is easily seen
from Newton’s Identities thatgh is injective and ifR contains the rationalsQ thengh is bijective.
In this latter case the ring structure ontR[[t]] given by (2) determines a ring structure onW (R) so
thatgh : W (R) → tR[[t]] is an isomorphsim.

I am more interested in the case thatR = Z but it is in fact true in general that there is a
multiplication inW (R) which makesgh a homomorphism of rings. There are probably more
arguments for this than there are authors who have written about Witt vectors (see, for example,
[1, 2, 3]) but I must stick in my own two cents worth with a sketch of my own favorite argument.
It is clearly enough to establish this for the ringZ[{ai}∞i=1, {bi}

∞
i=1, {ci}

∞
i=1] of polynomials in

infinitely many indeterminants, so we can assume thatR is an integral domain with noZ-torsion.
Thusgh is injective and one only needs to show that iff, g are in the image ofgh thenfg is
also in the image. Now Newton’s Identities tell us that thenth ghost componentghn(a) depends
only on the firstn components ofa and thus by a limit argument in the appropriate topology it is
enough to show that givena, b ∈ W (R) given any positive integern there is ac ∈ W (R) with
ghi(c) = ghi(a)ghi(b) for i ≤ n. But imbedR in an algebraically closed fieldK and consider the
polynomialsp(t) = 1 + a1t+ · · ·+ ant

n, q(t) = 1 + b1t+ · · ·+ bnt
n ∈ K[t]. Suppose these have

roots{α1, . . . , αn}, {β1, . . . , βn} respectively inK. By the classical theory of symmetric functions
the polynomialu(t) = 1+ c1t+ · · ·+ cn2tn

2

which has roots{αiβj|1 ≤ i, j ≤ n} has coefficients
in R. But the original content of Newton’s Identities was thatghi(p) = α−i

1 + · · · + α−i
n etc. so

that for1 ≤ i ≤ n ghi(a)ghi(b) = ghi(p)ghi(q) = ghi(u) and thusc = 1+ c1t+ c2t
2 + · · · is our

desired Witt vector.
Denoting multiplication by∗ it is seen

(1− rtm) ∗ (1− stn) = (1− rn/dsm/dtmn/d)d, d = (m,n) (3)

where(m,n) is the greatest common divisor. This can be checked by notingthat

gh(1− rtm) = mrtm +mr2t2m +mr3t3m + · · ·

In particular1 − t is the multiplicative identity. (The astute reader will note that this differs from
some authors such as [8, 2] where(1− t)−1 is the multiplicative identity.)
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In generalW (R) is not anR-algebra, however there is a fairly common type of ring for which
W (R) is anR-algebra. This is abinomial ring, i.e. a ring with noZ-torsion in which for each
r ∈ R and positive integern,

(

r
n

)

=
r(r − 1) · · · (r − n+ 1)

n!

is an element ofR. For example the ring of integers and any ring containingQ is a binomial ring.
For a binomial ring there is a mapλ : R → W (R) given by

λ(r) = (1− t)r =
∞
∑

n=0

(−1)n
(

r
n

)

tn

which imbedsR as a subring ofW (R). More generally

(1− tm)r =
∞
∑

n=0

(−1)n
(

r
n

)

tmn

is an element ofW (R). We note that

gh((1− tm)r) = mrtm +mrt2m +mrt3m + · · ·

which, incidentally, gives a proof (lettingm = 1) thatλ is an injective ring homomorphism.
For our purposes, the central result of this section is essentially the first proposition of [8, p.

113]. I remind the reader that
∏

below refers to the “sum” inW (R).

Proposition 1 LetR be a binomial ring. Then eacha ∈ W (R) can be written uniquely in the
form

a =
∞
∏

m=1

(1− tm)rm

for appropriater1, r2, r3, . . . ∈ R.

Sketch of Proof: Supposegh(a) = fmt
m + fm+1t

m+1 + · · · for somem ≥ 1. It follows easily
from Newton’s identities thatfm is divisible bym in R so thena(1 − tm)−(fm/m) ∈ W (R) and
ghi(a(1 − tm)−(fm/m)) = 0 for all i ≤ m + 1. Thus successively “subtracting” Witt vectors of
the form(1− tm)rm from a produces a sequence of elements inW (R) converging to the zero Witt
vector. An appropriate limit argument would clean up the details.

Example 2 I illustrate the constructive approach above by calculating the decomposition of the
Witt vectora = 1− 5t ∈ W (Z). I first calculate

gh(a) = 5t+ 25t2 + 125t3 + 625t4 + 3125t5 + 15625t6 + · · ·

I now note thatgh((1− t)5) = 5t+ 5t2 + 5t3 + · · · so

gh(a(1− t)−5) = 20t2 + 120t3 + 620t4 + 3120t5 + 15620t6 + · · ·
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But gh(((1− t2)10) = 20t2 + 20t4 + 20t6 + · · · so

gh(a(1− t)−5(1− t2)−10) = 120t3 + 600t4 + 3120t5 + 15600t6 + · · ·

Nextgh((1− t3)40 = 120t3 + 120t6 + · · · so

gh(a(1− t)−5(1− t2)−10(1− t3)−40) = 600t4 + 3120t5 + 15480t6 + · · ·

Finally as600/4 = 150, 3120/5 = 624 and15480/6 = 2580 I conclude that

a = (1− t)5(1− t2)10(1− t3)40(1− t4)150(1− t5)624(1− t6)2580 · · ·

Assuming thata ∈ W (R) has the factorizationa =
∏∞

m=1(1 − tm)rm then it is seen that the
nth ghost component is

ghn(a) =
∑

d|n

drd

A straightforward application of the M̈obius inversion formula gives

Proposition 3 Leta ∈ W (R) whereR is a binomial ring. Suppose

gh(a) = g1t+ g2t
2 + g3t

3 + · · ·

Thena =
∏∞

m=1(1− tm)rm where

rm =
1

m

∑

d|m

µ
(m

d

)

gd

whereµ is the M̈obius function.

2 The Grothendieck – Burnside ring

In this section I construct the Grothendieck – Burnside ring of [5] in the special case of the infinite
cyclic group. In [5] this is constructed for any profinite group G, but I prefer to avoid all the
technicalities involved. Thus letG denote the infinite cyclic group.

A (finite) G-space(S, σ) then consists simply of a finite setS together with a permutationσ
of S. ThusG acts onS by n ∈ G acting onx ∈ S by σn(x). Two G-spaces(S, σ), (T, τ) are
isomorphic if there is a bijectionu : S → T with τu = uσ. If (S, σ), (T, τ) are twoG-spaces then
there is a join(S

⊔

T, σ ⊔ τ) given byS
⊔

T being the the disjoint union ofS andT and

σ ⊔ τ(x) =

{

σ(x) if x ∈ S
τ(x) if x ∈ T

There is also the cartesian productG-space(S × T, σ × τ) where, of course,σ × τ(x, y) =
(σ(x), τ(y)).
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I now letΩ be the Grothendieck group of the class of these (finite)G-spaces, i.e.Ω is the free
abelian group generated by isomorphism classes[S, σ] ofG-spaces modulo the relation[S

⊔

T, σ⊔
τ ] = [S, σ] + [T, τ ]. It is easily seen that the cartesian product operation induces a product onΩ so
thatΩ is a commutative ring.

Once again we have a ghost map. Here we defineGh : Ω → tZ[[t]] by Gh([S, σ] =
∑∞

n=1Ghn([S, σ]) whereGhn([S, σ]) is the number of elements ofS left fixed by the action of
the subgroup ofG generated byn, i.e the number of elements ofS left fixed by the permutation
σn. This is well defined on isomorphism classes and is easily seen to be compatible with the ring
structure onΩ and so factors as a ring homomorphismGh : Ω → tZ[[t]] where the latter ring is
viewed as the infinite product of the previous section.

The point is that this ghost map factors through the ghost mapof the previous section, i.e. there
is a mapψ : Ω → W (Z) so that the diagram commutes.

Ω
�
�
�

�
�
�
��*

H
H
H

H
H
H
HHj

W (R)

tZ[[t]]

?
Gh

ψ

gh

To see this, I first consider the case when(S, σ) is a transitiveG-space, i.e.σ has only one
orbit, i.e. is a cycle. Suppose thatS hasm elements. It is easily seen thatσn has fixed points only
if m|n, i.e. σn is the identity, in which caseσn hasm fixed points. Thus

Gh([S, σ]) = mtm +mt2m +mt3m + · · · = gh(1− tm)

But every permutation is the product of disjoint cycles so inΩ each class[S, σ] is a sum of transitive
G-spaces. It follows that ifσ factors as a product ofrm cycles of lengthm for m = 1, 2, 3, . . . then
ψ should be given by

ψ([S, σ]) = (1− t)r1(1− t2)r2(1− t3)r3 · · ·

It is easily checked that this does in fact work. It should be noted that since we are working with
finiteG-spaces that this “sum” is in fact finite, i.e.rm = 0 for largem.

As a consequence of the above description ofψ one obtains

Proposition 4 Let (S, σ) be a finiteG-space withψ([S, σ]) =
∏∞

m=1(1− tm)rm. Then the number
of distinct orbits of elements ofS of lengthn under the permutationσ is rn and the total number
of distinct orbits is

∑∞
m=1 rm.

3 Necklaces

In this section I apply the preceding results to counting necklaces. It should be emphasized that
all the results here are classical, but given the preceding discussion I can give a much simpler
exposition.
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By a necklace withn beads inc colors, I mean an arrangement ofn objects (beads) ofc different
colors around a circle. If the circle is rotated the resulting necklace is considered to be the same as
the original, however a flip may produce a different necklace.

A more formal way of describing this is the following: letB be a set ofn objects (the beads)
andC be a set ofc elements (the colors). Then consider the setS of thecn functionsf : B → C.
Now letγ be a cyclic permutation of the setS, i.e. there is only one orbit andγ has ordern. Then
there is a permutationσ of S given byσ(f) = f ◦γ. A necklace is an orbit inS of the permutation
σ.

Thus (S, σ) is a G-space, so by Proposition 4 to count necklaces we need only calculate
ψ([S, σ]). But sincegh : W (Z) → tZ[[t]] is an injection, we can first calculateGh([S, σ]) and lift.

Now the main observation is thatf is a fixed point ofσk if and only if f is constant on each
orbit of γk. If k is relatively prime ton thenγk again has only one orbit sof must be constant,
i.e.Ghk([S, σ]) = c. More generally, if(k, n) = d, (here and below(k, n) is the greatest common
divisor) thenγk hasd orbits, on each of whichf must be constant. ThusGhk([S, σ]) = cd.

Example 5 Suppose I wish to know the number of necklaces with 6 beads of 5possible colors.
By the above paragraph

Gh([S, σ]) = 5t+ 25t2 + 125t3 + 25t4 + 5t5 + 15625t6 + · · ·

and is periodic of period 6. Using the technique of Example 2 (note even that the first 3 terms are
the same) I easily calculate

ψ([S, σ)] = (1− t)5(1− t2)10(1− t3)40(1− t6)2580

It follows from Proposition 4 that there are5 + 10 + 40 + 2580 = 2635 such necklaces.

Generalizing from the above example I note that by Proposition 4 of the last section, since
the order of each cycle ofσ dividesn, thatψ([S, σ]) =

∏

d|n(1 − td)rd . But gh(1 − td) = dtd +

dt2d + · · · + n
d
tn + · · · so if we add the coefficients ofti for 1 ≤ i ≤ n we getn

d
d = n. Hence

the coefficients ofti, 1 ≤ i ≤ n in the expansion ofgh((1 − td)rd) add tonrd and hence the

coefficients ofti, 1 ≤ i ≤ n of Gh([S, σ]) = gh(ψ([S, σ]) add ton
(

∑

d|n rd

)

. By Proposition 4

the sum in parentheses is the number of necklaces, and so one may conclude that the number of
necklaces withn beads inc colors is

1

n

n
∑

k=1

Ghk([S, σ]) =
1

n

n
∑

k=1

c(k,n)

But note that the number of times the termcd appears in the last sum isφ(n
d
) whereφ is Euler’s

φ function. And thus we obtain the classical formula:

Theorem 6 The number of necklaces withn beads andc colors is

1

n

∑

d|n

φ
(n

d

)

cd
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I now look at the problem of counting primitive necklaces with n beads inc colors, letM(c, n)
denote the number of these. A primitive necklace is one whichis asymmetric under rotation, i.e.
corresponds to an orbit of lengthn in S underσ. Thus we see from Proposition 4M(c, n) = rn
whereψ([S, σ]) =

∏∞
m=1(1 − tm)rm . From this and Proposition 3 we immediately obtain the

formula attributed to Col. Moreau

Theorem 7
M(c, n) =

1

n

∑

d|n

µ
(n

d

)

cd

whereµ is the M̈obius function.

Motivated by Examples 2,5 the reader might observe that the “coefficient”rn in the expansion
(1− ct) =

∏∞
m=1(1− rm)rm is also given by the same formula

∑

d|n µ(
n
d
)cd and hence

(1− ct) =
∞
∏

n=1

(1− tn)M(c,n)

This identity usually occurs in the literature by replacingeach side by its “negative” as

Theorem 8 (The Cyclotomic Identity) For each positive integerc

1

1− ct
=

∞
∏

n=1

(

1

1− tn

)M(c,n)

Thus from Example 2 one may conclude thatM(5, 1) = 5,M(5, 2) = 10,M(5, 3) = 40,M(5, 4) =
150,M(5, 5) = 624 andM(5, 6) = 2580 etc.

So far the multiplicative structure ofW (Z) has not played much of a role. As my last result, I
derive an identity from [8] using Witt vector multiplication.

Theorem 9 For integersi, j let (i, j) denote the greatest common divisor and[i, j] be the least
common multiple. Then for all positive integersa, b, n,

M(ab, n) =
∑

[i,j]=n

(i, j)M(a, i)M(b, j)

Proof: M(ab, n) is the “coefficient” of(1−tn) in the expansion(1−abt) =
∏∞

m=1(1−t
m)M(ab,m)

by the previous theorem. But inW (Z), (1− abt) = (1− at) ∗ (1− bt) so

(1− abt) =

(

∞
∏

i=1

(1− ti)M(a,i)

)

∗

(

∞
∏

j=1

(1− tj)M(b,j)

)

By virtue of Equation 3 the(1− tn) term in this last product will be the “sum” of all products

(1− ti)M(a,i) ∗ (1− tj)M(b,j) = (1− t[i,j])(i,j)M(a,i)M(b,j)

where[i, j] = n. This finishes the proof.
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