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It has always amazed me how the most abstract ideas in matibsrhave been applied to
the art of counting things. Examples that come to mind in comative algebra include Reisner’s
use of Cohen Macaulay rings to count faces of sphere triatigngaand the use of Hochschild
homology by Bayer and Diaconis to solve problems in card shgfflt has never been clear to me
whether this is because underneath all our abstractiorthematics really is just about counting
things or whether this phenomenon is merely due to the lagge ef combinatorists — they want
us tothink mathematics is about counting things.

In this note | explore some more connections between contiveielgebra and counting tech-
niques. These connections lend credence to my latter sitigpogor this connection has appar-
ently led to no new combinatorics, all the formulas aboukises were well known long before,
and the thrust of the published papers [8, 5, 6] seems to besdnaehow the combinatorics im-
proves the algebra, an idea of which | am skeptical. In thie héake an opposite point of view
from [8], | assume the algebra is reasonably familiar anevdéne combinatorics from the algebra.

1 Witt Vectors

The preceding ideas can be axiomitized by the modern idelhi@f {Vitt vectors. It is generally
accepted that these Witt vectors made their official debthenpaper by Cartier [4] even though
they appear to have been discovered much earlier by E. Witinktance they had previously
appeared in print in the form of a series of exercises in Sglsaextbook [7].

Let R be a commutative ring with unit, which | will view as a commiiita Z-algebra. As a set
we definelV (R) to be the set of unitary power seriesfini.e W(R) = {a(t) = 1 + ait + ast?* +

- € R][t]]}. The addition ini¥(R) will be the usual multiplication of power series. | will use

the usual multiplicative notation, so that foft), b(t) € W(R), a(t)b(t) is the “sum”,% is the
“difference”, and in an expression such(as- ¢)", r is the “coefficient”.

Central to our discussion is tlghost map This is the mapV (R) — tR[[t]] given by

gh(a) = —tzl((f)) = %log a(t)



If gh(a(t)) = fit + fot®> + --- we call f; theith ghost component af or gh;(a). | think it is
useful to recognize that the connection between the cormteréa(t) € W (R) and the ghost
components is given by the classid&wton’s Identities.

fn + fnflal + fn72a2 + -t f1&n71 +na, =0 (1)

The ghost map is a homomorphism of the additve group$ 6R) andtR[[t]], but rather than
viewing ¢ R[[t]] as an ideal of?[[¢]] | will view it as the produc{[;”, R via the mapfit + fot* +
-« (f1, f2, f3,...) and thus addition is the same but multiplication is given by

(fit + fot® + ) % (it + got® + -+ ) = (frgn)t + (faga)t® + -+ (2)

If R has noZ-torsion (i.e.nr = 0 impliesr = 0forn € Z,n # 0,r € R) then itis easily seen
from Newton’s Identities thajh is injective and ifR contains the rational® thengh is bijective.
In this latter case the ring structure oR([[t]] given by (2) determines a ring structure Bi(R) so
thatgh : W (R) — tR][[t]] is an isomorphsim.

| am more interested in the case that= Z but it is in fact true in general that there is a
multiplication in W (R) which makesgh a homomorphism of rings. There are probably more
arguments for this than there are authors who have writtentalyitt vectors (see, for example,
[1, 2, 3]) but | must stick in my own two cents worth with a sketef my own favorite argument.
It is clearly enough to establish this for the ri@g{a;},, {b:}2,, {c:}:2,] of polynomials in
infinitely many indeterminants, so we can assume tha an integral domain with ng-torsion.
Thus gh is injective and one only needs to show thaffify are in the image ofjh then fg is
also in the image. Now Newton’s Identities tell us that thle ghost componenth,,(a) depends
only on the firstn components ofi and thus by a limit argument in the appropriate topology it is
enough to show that given b € W (R) given any positive integet there is ac € W (R) with
ghi(c) = gh;(a)gh;(b) for i < n. ButimbedR in an algebraically closed field” and consider the
polynomialsp(t) = 1 4+ ait + - - - + ant”,q(t) = 1 + bit + - - - + b, t" € K[t]. Suppose these have
roots{ay, ..., a,}, {1, .., 5.} respectively ink. By the classical theory of symmetric functions
the polynomiaki(t) = 1+ ¢1t + - - - + ¢,2t™ which has root§ ;3,1 < i, j < n} has coefficients
in R. But the original content of Newton’s Identities was that(p) = a;* + -+ + «a;* etc. so
that forl < i < n gh;(a)gh;(b) = ghi(p)ghi(q) = gh;(u) and thus: = 1 + 1t + cot? + - - - is our
desired Witt vector.

Denoting multiplication by it is seen

(1 —7t™) % (1 — st") = (1 — p/dgm/dgmn/dyd g — (m n) (3)
where(m, n) is the greatest common divisor. This can be checked by nthiig
gh(1 —7t™) = mrt™ 4+ mr?t*™ + mr3t>™ + . ..

In particularl — ¢ is the multiplicative identity. (The astute reader will edhat this differs from
some authors such as [8, 2] wheie— ¢)~! is the multiplicative identity.)



In generallV (R) is not anR-algebra, however there is a fairly common type of ring foickih
W(R) is an R-algebra. This is &inomial ring, i.e. a ring with noZ-torsion in which for each
r € R and positive integen,

(r) r(r—1)---(r—m+1)

n) = n!

is an element of2. For example the ring of integers and any ring contairnig a binomial ring.
For a binomial ring there is a map: R — W (R) given by

[e.9]

M) = (=8 = 3= (7)) ¢

n=0

which imbedsR as a subring of’(R). More generally

is an element of¥/(R). We note that
gh((1 —t™)") = mrt™ + mrt?™ + mrt>™ 4+ - - .

which, incidentally, gives a proof (letting. = 1) that\ is an injective ring homomorphism.
For our purposes, the central result of this section is ésdigrthe first proposition of [8, p.
113]. I remind the reader tha{ below refers to the “sum” iV (R).

Proposition 1 Let R be a binomial ring. Then each € W(R) can be written uniquely in the
form

a=JJa-tmm

m=1

for appropriatery, o, 13, ... € R.

Sketch of Proof: Supposgii(a) = ft™ + friit™ + - -+ for somem > 1. It follows easily
from Newton’s identities thaf,, is divisible bym in R so thena(1 — ¢t™)~(/=/™ ¢ W(R) and
ghi(a(l — t™)~Un/m) = 0 for all i < m + 1. Thus successively “subtracting” Witt vectors of
the form(1 — ¢™)™ from a produces a sequence of element8liQR) converging to the zero Witt
vector. An appropriate limit argument would clean up thadet

Example 2 | illustrate the constructive approach above by calcuatire decomposition of the
Witt vectora = 1 — 5t € W(Z). | first calculate

gh(a) = 5t + 25t% + 125¢° + 625t* + 3125¢° + 15625t° + - - -
| now note thayh((1 —t)°) = 5t + 5t + 5t + - - - so

gh(a(l —1)7%) = 20t* + 120t + 620t* + 3120¢° + 15620t° + - - -

3



But gh(((1 — t*)'%) = 20¢* + 20¢* + 20t° + - - - so
gh(a(l —t)7°(1 — ¢*)71%) = 120> + 600t" + 3120¢° + 15600t° + - - -
Nextgh((1 —3)%0 = 1203 + 120t° + - - - so
gh(a(l —t)=5(1 — t*)71(1 — 3)7*) = 600t* 4 3120t° + 15480t + - - -
Finally as600,/4 = 150, 3120/5 = 624 and15480/6 = 2580 | conclude that
a=(1— t)5(1 _ t2)10(1 _ t3)40(1 _ t4)150(1 _ t5)624(1 _ t6)2580 .

Assuming that: € W (R) has the factorization = [[~_, (1 — t™)"™ then it is seen that the
nth ghost component is

ghy(a) = Z drg

dn

A straightforward application of the Bbius inversion formula gives
Proposition 3 Leta € W (R) whereR is a binomial ring. Suppose
ghla) = git + got® + gst® + - -
Thena =[] -_ (1 —t™)" where
1 m
T'm = m dz: H <E> 9d

wherey is the Mbbius function.

2 The Grothendieck — Burnside ring

In this section | construct the Grothendieck — Burnside rih[gpin the special case of the infinite
cyclic group. In [5] this is constructed for any profinite gmG, but | prefer to avoid all the
technicalities involved. Thus Iéf denote the infinite cyclic group.

A (finite) G-space(S, o) then consists simply of a finite séttogether with a permutation
of S. ThusG acts onS by n € G acting onz € S by o"(z). Two G-spaceyS,o), (T, 7) are
isomorphic if there is a bijection : S — T with Tu = uo. If (S, 0), (T, 7) are twoG-spaces then
there is ajoin(S| | 7,0 U ) given by S| | T being the the disjoint union &f and7" and

o(x) ifxes
UUT(w):{ () fxeT

There is also the cartesian produgtspace(S x T,0 x 7) where, of courseg x 7(z,y) =

(o(2), 7(y))-



I now let$2 be the Grothendieck group of the class of these (firditespaces, i.e) is the free
abelian group generated by isomorphism clagSes| of G-spaces modulo the relatiofi| | 7", oL
7] =[S, 0]+ [T, 7]. Itis easily seen that the cartesian product operationcdesla product of2 so
that(2 is a commutative ring.

Once again we have a ghost map. Here we defihe: Q — ¢Z][[t]] by Gh([S,0] =
> oo Ghy([S, o]) whereGh,([S, 0]) is the number of elements of left fixed by the action of
the subgroup ofs generated by, i.e the number of elements 6fleft fixed by the permutation
o". This is well defined on isomorphism classes and is easily sebe compatible with the ring
structure o2 and so factors as a ring homomorphigth : @ — tZ[[t]] where the latter ring is
viewed as the infinite product of the previous section.

The point is that this ghost map factors through the ghostoh#e previous section, i.e. there
isamapy : Q — W(Z) so that the diagram commutes.

/w W(R)
Q w gh
tZ][t]]

To see this, | first consider the case wheh o) is a transitiveG-space, i.e.c has only one
orbit, i.e. is a cycle. Suppose théithasm elements. It is easily seen thét has fixed points only
if m|n, i.e. o™ is the identity, in which case™ hasm fixed points. Thus

Gh([S, o)) = mt™ + mt*™ + mt*™ + - - = gh(1 —t™)

But every permutation is the product of disjoint cycles s@ isach clas§S, o] is a sum of transitive
G-spaces. It follows that i# factors as a product af,, cycles of lengthn form = 1,2, 3, ... then
1 should be given by
(S, o]) = (1 —t)" (1 =)= (1= £°)™ -
It is easily checked that this does in fact work. It should b&ed that since we are working with
finite G-spaces that this “sum” is in fact finite, i.e,, = 0 for largem.
As a consequence of the above descriptiofy ohe obtains

Proposition 4 Let (S, o) be a finiteG-space with)([S, o]) = [ -_,(1 —t™)". Then the number
of distinct orbits of elements ¢f of lengthn under the permutation is r,, and the total number
of distinct orbits isy " >_, ..

3 Necklaces

In this section | apply the preceding results to countingkiaaes. It should be emphasized that
all the results here are classical, but given the precedisussion | can give a much simpler
exposition.



By a necklace witm beads irc colors, | mean an arrangementobbjects (beads) efdifferent
colors around a circle. If the circle is rotated the resgltiecklace is considered to be the same as
the original, however a flip may produce a different necklace

A more formal way of describing this is the following: |18t be a set of: objects (the beads)
andC be a set of: elements (the colors). Then consider the$ef the ™ functionsf : B — C.
Now let~ be a cyclic permutation of the séf i.e. there is only one orbit anghas ordern. Then
there is a permutatiom of S given byo(f) = f o~. A necklace is an orbit it¥' of the permutation
g.

Thus (S,0) is a G-space, so by Proposition 4 to count necklaces we need ofdylate
¥([S,0]). Butsincegh : W(Z) — tZ][t]] is an injection, we can first calculaté:([S, ¢]) and lift.

Now the main observation is thdtis a fixed point ofs* if and only if f is constant on each
orbit of v*. If k is relatively prime ton then~* again has only one orbit s must be constant,
i.e. Ghi([S, 0]) = c. More generally, if k,n) = d, (here and belowk, n) is the greatest common
divisor) themy* hasd orbits, on each of whiclf must be constant. Thush,([S, o]) = %

Example 5 Suppose | wish to know the number of necklaces with 6 beadspafsSible colors.
By the above paragraph

Gh([S, o)) = 5t + 25t% + 125t% + 25t* + 5t° 4 15625t° +

and is periodic of period 6. Using the technique of Exampledi€ even that the first 3 terms are
the same) | easily calculate

Y([S,0)]=(1 - t)5(1 — t2)10(1 _ t3)40(1 o t6>2580
It follows from Proposition 4 that there abe+- 10 + 40 + 2580 = 2635 such necklaces.

Generalizing from the above example | note that by Promosii of the last section, since
the order of each cycle ef dividesn, thaty([S, o]) = [, (1 — /). But gh(1 — t) = dt? +
dt* 4 -+ “¢" 4 - - - so if we add the coefficients of for 1 < i < n we get%d = n. Hence
the coefficients of’, 1 < i < n in the expansion ofji((1 — t¢)") add tonr, and hence the

coefficients oft’, 1 < i < n of Gh([S,a]) = gh(v¥([S,o]) add ton (de rd>. By Proposition 4
the sum in parentheses is the number of necklaces, and soaneanclude that the number of
necklaces witln beads in- colors is

—Zth (1S, o)) Zc’“ﬂ

But note that the number of times the terfrappears in the last sumdg?%) whereg is Euler’s
¢ function. And thus we obtain the classical formula:

Theorem 6 The number of necklaces withbeads and: colors is

220 (i)



| now look at the problem of counting primitive necklacestwitbeads inc colors, let) (¢, n)
denote the number of these. A primitive necklace is one wisi@symmetric under rotation, i.e.
corresponds to an orbit of lengthin S undero. Thus we see from PropositionM (¢, n) = r,
where([S,o]) = ] -_,(1 —¢™)™. From this and Proposition 3 we immediately obtain the

formula attributed to Col. Moreau

e - L)

din

Theorem 7

wherey is the Mobius function.
Motivated by Examples 2,5 the reader might observe thatdbefficient”r,, in the expansion
(1 —ct) =[] n=: (1 —r™)" is also given by the same formujg,, 1(2)c* and hence

[e.9]

(1—ct) =[x —erMen

n=1

This identity usually occurs in the literature by replacearh side by its “negative” as

Theorem 8 (The Cyclotomic Identity) For each positive integer
1 00 1 M(c,yn)
1—ct :TE(l—t”)

Thus from Example 2 one may conclude tha5, 1) = 5, M (5,2) = 10, M(5,3) = 40, M (5,4) =
150, M (5,5) = 624 and M (5, 6) = 2580 etc.

So far the multiplicative structure ¥ (Z) has not played much of a role. As my last result, |
derive an identity from [8] using Witt vector multiplicatio

Theorem 9 For integersi, j let (i, j) denote the greatest common divisor gnd| be the least
common multiple. Then for all positive integer$, n,

M(ab,n) = Y (i, §)M(a,i)M(b, j)
[i,5]=n

Proof: M (ab, n) is the “coefficient” of(1—¢") in the expansiofil —abt) = []>_, (1—¢m)M(abm)
by the previous theorem. But itV (Z), (1 — abt) = (1 — at) = (1 — bt) so

(1 —abt) = (H(l _ tz‘)M(a,z‘)> * (H(l _ tj)M(b,j)>

=1 j=1

By virtue of Equation 3 th¢l — ¢") term in this last product will be the “sum” of all products
(1— tz‘)M(a,i) * (1 — tj>M(b,j) =(1- t[z’,j]>(i,j)M(a,z‘)M(b,j)

whereli, j] = n. This finishes the proof.
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