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Mathematics is not self evident. The ancient Greeks wanted it to be so, but they missed the

interplay between different branches of mathematics and the surprising consequences of this. This

is an account of such a phenomena. The story starts with an observation in 1629 about roots of

polynomials, touches the modern ideas of Witt vectors and Grothendieck groups and suddenly we

are able to easily obtain some formulas from the classical theory of counting necklaces. The ideas,

and connections, presented here are not new, (see, for example [9, 5, 6]) and maybe not even of

practical value, but the connection between these seemingly unrelated ideas is another example of

the amazing subtlety and consistency of mathematics.

Newton’s Identities

In his 1629 workL’invention nouvelle en l’alg̀ebre the Dutch mathematician Albert Girard

noted that there was a connection between the coefficients of the equationtn = atn−1 − btn−2 +

ctn−3 − dtn−4 + · · · and the sums of thekth powers of the rootsx1, x2, .., xn, i.e.

x1 + x2 + · · ·xn = a

x2
1 + x2

2 + · · ·x2
n = a2 − 2b

x3
1 + x3

2 + · · ·x3
n = a3 − 3ab+ 3c

x4
1 + x4

2 + · · ·x4
n = a4 − 4a2b+ 4ac+ 2b2 − 4d

(see, for example, [10, p. 86]).

A few years later in hisArithmetica universalis(again see [10, p. 95]) Isaac Newton discovered

that the generalization of Girard’s equations was the recursive series of identities

Theorem 1 (Newton’s Identities) Let x1, x2, x3, ..., xn be the roots, counted according to multi-

plicity, of the polynomial equation

tn + p1t
n−1 + p2t

n−2 + · · ·+ pn−1t+ pn = 0
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and let

sk = xk1 + xk2 + · · ·+ xkn

for k = 1, 2, 3, . . .. Then for eachk ≥ 1

sk + p1sk−1 + p2sk−2 + · · ·+ pk−1s1 + kpk = 0

Newton did not provide a proof, nor shall I at the present. Of course Newton was thinking

about the case where the coefficientspj were real, but this works equally well in any algebraically

closed field of characteristic 0. Note also we are assuming that the coefficientpj = 0 for j > n.

Newton’s identities allow one to calculate thesk recursively and his application was to estimate

the largest positive real root (assuming multiplicity 1 and that it is actually the largest complex

root in modulus) by k
√
sk for moderately largek. This is, of course, not useful today. A more

interesting application is to calculate the characteristic polynomialf(λ) = det(λI −A) of an×n

matrix A. If the eigenvalues ofA arex1, . . . , xn then the eigenvalues ofAk arexk1, . . . , x
k
n and

thussk = trace(Ak), which is easily calculated. Knowing thesk, k = 1, . . . , n one can work

backwards in Newton’s identities to find the coefficients of the characteristic polynomial.

There are similar classical identities to findsk = xk1 + · · ·+ xkn for negative values ofk which

are more to the point of this article.

Theorem 2 (Newton’s Identities) Let x1, x2, ..., xn be the roots (in an algebraically closed field

of characteristic 0) of the unitary polynomiala(t) = 1 + a1t+ a2t
2 + · · ·+ ant

n. Assumeaj = 0

for j > n and letsj = xj1 + · · ·xjn for j = −1,−2,−3, . . .. Then for allk > 0

kak + ak−1s−1 + ak−1s−2 + · · ·+ a1sk−1 + s−k = 0

Proof: From the factorization

a(t) = (1− x−1
1 t)(1− x−1

2 t) · · · (1− x−1
n t)
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it follows that the logrithmic derivative

a′(t)

a(t)
=
−x−1

1

1− x−1
1 t

+ · · ·+ −x−1
n

1− x−1
n t

Multiplying by −t gives

−ta
′(t)

a(t)
=

x−1
1 t

1− x−1
1 t

+ · · ·+ x−1
n t

1− x−1
n t

Now by the geometric series there is the formal series expansion

1

1− x−1
j t

= 1 + x−1
j t+ x−2

j t2 + · · ·

or
x−1
j t

1− x−1
j t

= x−1
j t+ x−2

j t2 + x−3
j t3 + · · ·

Summing over allj gives the formal power series

−ta
′(t)

a(t)
= s−1t+ s−2t

2 + s−3t
3 + · · · (1)

Multiplying both sides of this last equation bya(t) and equating the coefficients oftk on both sides

gives the identities of the theorem.

I remark that a proof of Theorem 1 can be obtained as above by expandingta
′(t)
a(t)

as a formal

power series in powers oft−1. I would also remark that using a computer algebra system it is often

easiest to calculate thes−k by using Equation (1), i.e. by expanding the left hand side as a power

series.

Now using the identities of Theorem 2 one can calculate thesk from the coefficientsaj or vice

versa. Thus the sequences−1, s−2, . . . gives an alternate representation of the polynomiala(t). I

will call these theghost coefficientsof the polynomial and write ghk(a(t)) = s−k.

It then makes sense given a unitary formal power seriesa(t) = 1 + a1t + a2t
2 + · · · to define

ghost components ghk(a(t)) = s−k by means of the identities in Theorem 2. Of course, one can

not then assume that thes−k are sums of thekth powers of the roots. Euler, however, did just that

when he calculated, correctly, the sums of the series

ζ(k) =
∞∑
n=1

1

nk
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for even integersk (see, for example, [7, p. 449]).

The ghost components, or more precisely the ghost series (i.e. the right hand of Equation (1))

acts somewhat like a logarithm. One can see this either from the equation

−ta
′(t)

a(t)
= −t d

dt
log a(t)

or by noting that the roots of the producta(t)b(t) are the elements of the “disjoint union” of the

roots of the two polynomials (“disjoint” so that multiplicities are counted correctly). From either

point of view one gets ghk(a(t)b(t)) = ghk(a(t)) + ghk(b(t)).

I end this section with the following idea. Suppose thatR is a subring of an algebraically

closed field of characteristic 0, i.e. an integral domain of characteristic 0. Leta(t), b(t) ∈ R[t]

be unitary polynomials with coefficients inR. I claim that there is a polynomialc(t) ∈ R[t]

so that ghk(c(t)) = ghk(a(t))ghk(b(t)) for eachk > 0. From a practical standpoint one can

calculate the ghost components ofa(t), b(t) and then work backwards using the identity of The-

orem 2, but it is not clear that only finitely many coefficientscj will be non-zero nor is it clear

that, if R does not contain all rational numbers, that the coefficents will be inR. Instead the

argument is to letx1, . . . , xm be the roots ofa(t), y1, . . . , yn be the roots ofb(t) in both cases

counted according to multiplicity. Now consider the polynomialc(t) of degreemn whose roots

are{xiyj|1 ≤ i ≤ m, 1 ≤ j ≤ n}. This clearly satisfies the correct identities on the ghost com-

ponents. But the coefficients ofc(t) are symmetric polynomials in the rootsxiyj. Now in these

symmetric polynomials the coefficient of any particular monomial iny1, . . . , yn is a symmetric

polynomial inx1, . . . , xm and hence, by the Fundamental Theorem on Symmetric polynomials

(eg. [8, Thm. 11, p133]) a polynomial in the coefficients ofa(t), i.e. an element ofR. But,

since the order in which we wrote down theyj ’s clearly doesn’t matter, the resulting polynomial

in R[y1, . . . , yn] is again symmetric and hence a polynomial in the coefficients ofb(t), hence an

element ofR.

Witt Vectors

The preceding classical ideas can be axiomatized by the modern idea of (big) Witt vectors. It

is generally accepted that these Witt vectors made their official debut in the paper by Cartier [4]

even though they appear to have been discovered much earlier by E. Witt, for instance they had
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previously appeared in print in the form of a series of exercises in S. Lang’s textbook [8].

LetR be a commutative ring with unit, which I will view as a commutativeZ-algebra. As a set

we defineW (R) to be the set of unitary power series inR, i.eW (R) = {a(t) = 1 + a1t+ a2t
2 +

· · · ∈ R[[t]]}. The addition inW (R) will be the usual multiplication of power series. I will use

the usual multiplicative notation, so that fora(t), b(t) ∈ W (R), a(t)b(t) is the “sum”, a(t)
b(t)

is the

“difference”, and in an expression such as(1− t)r, r is the “coefficient”.

Central to this is theghost map. This is the mapW (R)→ tR[[t]] given by

gh(a(t)) = −ta
′(t)

a(t)
=

d

dt
log a(t)

If gh(a(t)) = f1t+f2t
2 +· · · it is customary to callfi theith ghost component ofa(t) or ghi(a(t)).

The ghost map is a homomorphism of the additive groups ofW (R) andtR[[t]] but rather than

viewing tR[[t]] as an ideal ofR[[t]] I will view it as the product
∏∞

i=1 R via the mapf1t + f2t
2 +

· · · 7→ (f1, f2, f3, . . .) and thus addition is the same but multiplication is given by

(f1t+ f2t
2 + · · · ) ∗ (g1t+ g2t

2 + · · · ) = (f1g1)t+ (f2g2)t2 + · · · (2)

If R has noZ-torsion (i.e.nr = 0 impliesr = 0 for n ∈ Z, n 6= 0, r ∈ R) then it is easily seen

from Newton’s Identities that gh is injective and ifR contains the rationalsQ then gh is bijective.

In this latter case the ring structure ontR[[t]] given by (2) determines a ring structure onW (R) so

that gh: W (R)→ tR[[t]] is an isomorphsim.

It is in fact true in general that there is a multiplication inW (R) which makes gh a homo-

morphism of rings. There are probably more arguments for this than there are authors who have

written about Witt vectors (see, for example, [1, 2, 3]) but I must stick in my own two cents worth

with a sketch of my own favorite argument. It is clearly enough to establish this for the ring

Z[{ai}∞i=1, {bi}∞i=1, {ci}∞i=1] of polynomials in infinitely many indeterminants so we can assume

thatR is an integral domain with noZ-torsion. Thus gh is injective and one only needs to show

that if f, g are in the image of gh thenfg is also in the image. Now Newton’s Identities tell us that

thenth ghost component ghn(a) depends only on the firstn components ofa and thus by a limit ar-

gument in the appropriate topology the result follows from my remark at the end of the last section
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that givena, b ∈ W (R) and any positive integern there is ac ∈ W (R) with ghi(c) = ghi(a)ghi(b)

for i ≤ n.

Denoting our multiplication by∗ it is seen that

(1− rtm) ∗ (1− stn) = (1− rn/dsm/dtmn/d)d, d = (m,n) (3)

where(m,n) is the greatest common divisor ofm,n. This can be checked by noting that

gh(1− rtm) = mrtm +mr2t2m +mr3t3m + · · ·

In particular1 − t is the multiplicative identity. (The astute reader will note that this differs from

some authors such as [9, 2] where(1− t)−1 is the multiplicative identity.)

In generalW (R) is not anR-algebra, however there is a fairly common type of ring for which

W (R) is anR-algebra. This is abinomial ring, i.e. a ring with noZ-torsion in which for each

r ∈ R and positive integern, (
r

n

)
=
r(r − 1) · · · (r − n+ 1)

n!

is an element ofR. For example the ring of integers and any ring containingQ is a binomial ring.

For a binomial ring there is a mapλ : R→ W (R) given by

λ(r) = (1− t)r =
∞∑
n=0

(−1)n
(
r

n

)
tn

which imbedsR as a subring ofW (R). More generally

(1− tm)r =
∞∑
n=0

(−1)n
(
r

n

)
tmn

is an element ofW (R). We note that

gh((1− tm)r) = mrtm +mrt2m +mrt3m + · · ·

which, incidentally, gives a proof (lettingm = 1) thatλ is an injective ring homomorphism.

The main result of this section is essentially the first proposition of [9, p. 113]. I remind the

reader that
∏

below refers to the “sum” inW (R). Also, at this point I will start writinga instead

of a(t).
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Proposition 3 LetR be a binomial ring. Then eacha ∈ W (R) can be written uniquely in the

form

a =
∞∏
m=1

(1− tm)rm

for appropriater1, r2, . . . ∈ R.

Sketch of Proof: Suppose gh(a) = fmt
m + fm+1t

m+1 + · · · for somem ≥ 1. It follows easily

from Newton’s identities thatfm is divisible bym in R so thena(1 − tm)−(fm/m) ∈ W (R) and

ghi(a(1− tm)−(fm/m)) = 0 for all i ≤ m+ 1. Thus successively “subtracting” Witt vectors of the

form (1 − tm)rm from a produces a sequence of elements inW (R) converging to the zero Witt

vector. An appropriate limit argument would clean up the details.

Example 4 I illustrate the constructive approach above by calculating the decomposition of the

Witt vectora = 1− 5t ∈ W (Z). I first calculate

gh(a) = 5t+ 25t2 + 125t3 + 625t4 + 3125t5 + 15625t6 + · · ·

I now note that gh((1− t)5) = 5t+ 5t2 + 5t3 + · · · so

gh(a(1− t)−5) = 20t2 + 120t3 + 620t4 + 3120t5 + 15620t6 + · · ·

But gh((1− t2)10) = 20t2 + 20t4 + 20t6 + · · · so

gh(a(1− t)−5(1− t2)−10) = 120t3 + 600t4 + 3120t5 + 15600t6 + · · ·

Next gh((1− t3)40 = 120t3 + 120t6 + · · · so

gh(a(1− t)−5(1− t2)−10(1− t3)−40) = 600t4 + 3120t5 + 15480t6 + · · ·

Finally as600/4 = 150, 3120/5 = 624 and15480/6 = 2580 I conclude that

a = (1− t)5(1− t2)10(1− t3)40(1− t4)150(1− t5)624(1− t6)2580 · · ·

Assuming thata ∈ W (R) has the factorizationa =
∏∞

m=1(1 − tm)rm then it is seen that the

nth ghost component is

ghn(a) =
∑
d|n

drd

A straightforward application of the M̈obius inversion formula gives
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Proposition 5 Leta ∈ W (R) whereR is a binomial ring. Suppose

gh(a) = g1t+ g2t
2 + g3t

3 + · · ·

Thena =
∏∞

m=1(1− tm)rm where

rm =
1

m

∑
d|m

µ
(m
d

)
gd

whereµ is the M̈obius function.

The Grothendieck – Burnside ring

In this section I construct the Grothendieck – Burnside ring of [5] in the special case of the

infinite cyclic group. In [5, 6] this is constructed for any profinite groupG, but I prefer to avoid all

the technicalities involved. Thus letG denote the infinite cyclic group.

A (finite) G-space(S, σ) then consists simply of a finite setS together with a permutationσ

of S. ThusG acts onS by n ∈ G acting onx ∈ S by σn(x). Two G-spaces(S, σ), (T, τ) are

isomorphic if there is a bijectionu : S → T with τu = uσ. If (S, σ), (T, τ) are twoG-spaces then

there is a join(S
⊔
T, σ t τ) given byS

⊔
T being the the disjoint union ofS andT and

σ t τ(x) =

{
σ(x) if x ∈ S
τ(x) if x ∈ T

There is also the cartesian productG-space(S × T, σ × τ) where, of course,σ × τ(x, y) =

(σ(x), τ(y)).

I now let Ω be the Grothendieck group of the class of these (finite)G-spaces, i.e.Ω is the free

abelian group generated by isomorphism classes[S, σ] ofG-spaces modulo the relation[S
⊔
T, σt

τ ] = [S, σ] + [T, τ ]. It is easily seen that the cartesian product operation induces a product onΩ so

thatΩ is a commutative ring.

Once again we have a ghost map. Here we define Gh: Ω→ tZ[[t]] by Gh([S, σ] =
∑∞

n=1 Ghn([S, σ])tn

where Ghn([S, σ]) is the number of elements ofS left fixed by the action of the subgroup ofG gen-

erated byn, i.e the number of elements ofS left fixed by the permutationσn. This is well defined

on isomorphism classes and is easily seen to be compatible with the ring structure onΩ and so
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factors as a ring homomorphism Gh: Ω → tZ[[t]] where the latter ring is viewed as the infinite

product of the previous section.

The point is that this ghost map factors through the ghost map of the previous section, i.e. there

is a mapψ : Ω→ W (Z) so that the diagram commutes.

Ω
��
��
�
��
�*

HHH
HHHHHj

W (R)

tZ[[t]]

?Gh

ψ

gh

To see this, I first consider the case when(S, σ) is a transitiveG-space, i.e.σ has only one

orbit, i.e. σ is a cycle. Suppose thatS hasm elements. It is easily seen thatσn has fixed points

only if m|n, i.e. σn is the identity, in which caseσn hasm fixed points. Thus

Gh([S, σ]) = mtm +mt2m +mt3m + · · · = gh(1− tm)

But every permutation is the product of disjoint cycles so inΩ each class[S, σ] is a sum of transitive

G-spaces. It follows that ifσ factors as a product ofrm cycles of lengthm for m = 1, 2, 3, . . . then

ψ should be given by

ψ([S, σ]) = (1− t)r1(1− t2)r2(1− t3)r3 · · ·

It is easily checked that this does in fact work. It should be noted that since we are working with

finiteG-spaces that this “sum” is in fact finite, i.e.rm = 0 for largem.

As a consequence of the above description ofψ one obtains

Proposition 6 Let (S, σ) be a finiteG-space withψ([S, σ]) =∏∞
m=1(1 − tm)rm. Then the number of distinct orbits of elements ofS of lengthn under the

permutationσ is rn and the total number of distinct orbits is
∑∞

m=1 rm.

Necklaces
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In this section I apply the preceding results to counting necklaces. It should be emphasized that

all the results here are classical, none-the-less I find the connection between these classical results

and the ideas presented above to be striking.

By a necklace withn beads inc colors, I mean an arrangement ofn objects (beads) ofc different

colors around a circle. If the circle is rotated the resulting necklace is considered to be the same as

the original, however a flip may produce a different necklace.

A more formal way of describing this is the following: letB be a set ofn objects (the beads)

andC be a set ofc elements (the colors). Then consider the setS of all functionsf : B → C.

Now letγ be a cyclic permutation of the setB, i.e.γ has ordern. Then there is a permutationσ of

S given byσ(f) = f ◦ γ. A necklace is an orbit inS of the permutationσ.

Thus (S, σ) is a G-space, so by Proposition 6 to count necklaces one need only calculate

ψ([S, σ]). But since gh: W (Z)→ tZ[[t]] is an injection, the strategy is to first calculate Gh([S, σ])

and lift.

Now the main observation is thatf is a fixed point ofσk if and only if f is constant on each

orbit of γk. If k is relatively prime ton thenγk again has only one orbit sof must be constant,

i.e. Ghk([S, σ]) = c. More generally, if(k, n) = d, (here and below(k, n) is the greatest common

divisor) thenγk hasd orbits, on each of whichf must be constant. Thus Ghk([S, σ]) = cd.

Example 7 Suppose I wish to know the number of necklaces with 6 beads of 5 possible colors.

By the above paragraph

Gh([S, σ]) = 5t+ 25t2 + 125t3 + 25t4 + 5t5 + 15625t6 + · · ·

and is periodic of period 6. Using the technique of Example 4 (note even that the first 3 terms are

the same) I easily calculate

ψ([S, σ)] = (1− t)5(1− t2)10(1− t3)40(1− t6)2580

It follows from Proposition 6 that there are5 + 10 + 40 + 2580 = 2635 such necklaces.

Generalizing from the above example I note that by Proposition 6 of the last section, since

the order of each cycle ofσ dividesn, thatψ([S, σ]) =
∏

d|n(1 − td)rd . But gh(1 − td) = dtd +
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dt2d + · · ·+ n
d
tn + · · · so if we add the coefficients ofti for 1 ≤ i ≤ n we getn

d
d = n. Hence the

coefficients ofti, 1 ≤ i ≤ n in the expansion of gh((1−td)rd) add tonrd and hence the coefficients

of ti, 1 ≤ i ≤ n of Gh([S, σ]) = gh(ψ([S, σ]) add ton
(∑

d|n rd

)
. By Proposition 6 the sum in

parentheses is the number of necklaces, and so one may conclude that the number of necklaces

with n beads inc colors is
1

n

n∑
k=1

Ghk([S, σ]) =
1

n

n∑
k=1

c(k,n)

But note that the number of times the termcd appears in the last sum isφ(n
d
) whereφ is Euler’s

φ function. And thus I have obtained the classical formula:

Theorem 8 The number of necklaces withn beads andc colors is

1

n

∑
d|n

φ
(n
d

)
cd

I now look at the problem of counting primitive necklaces withn beads inc colors, letM(c, n)

denote the number of these. A primitive necklace is one which is asymmetric under rotation, i.e.

corresponds to an orbit of lengthn in S underσ. Thus we see from Proposition 6M(c, n) = rn

whereψ([S, σ]) =
∏∞

m=1(1 − tm)rm. And from this and Proposition 5 I immediately obtain the

formula attributed to Col. Moreau (see [9]).

Theorem 9

M(c, n) =
1

n

∑
d|n

µ
(n
d

)
cd

whereµ is the M̈obius function.

Motivated by Examples 4,7 the reader might observe that the “coefficient”rn in the expansion

(1− ct) =
∏∞

m=1(1− rm)rm is also given by the same formula
∑

d|n µ(n
d
)cd and hence

(1− ct) =
∞∏
n=1

(1− tn)M(c,n)

This identity usually occurs in the literature by replacing each side by its “negative” as
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Theorem 10 (The Cyclotomic Identity) For each positive integerc

1

1− ct
=
∞∏
n=1

(
1

1− tn

)M(c,n)

Thus from Example 4 one may conclude thatM(5, 1) = 5,M(5, 2) = 10,M(5, 3) = 40,M(5, 4) =

150,M(5, 5) = 624 andM(5, 6) = 2580 etc.

So far the multiplicative structure ofW (Z) has not played much of a role. As my last result, I

derive an identity from [9] using Witt vector multiplication.

Theorem 11 For integersi, j let (i, j) denote the greatest common divisor and[i, j] be the least

common multiple. Then for all positive integersa, b, n,

M(ab, n) =
∑

[i,j]=n

(i, j)M(a, i)M(b, j)

Proof: M(ab, n) is the “coefficient” of(1−tn) in the expansion(1−abt) =
∏∞

m=1(1−tm)M(ab,m)

by the previous theorem. But inW (Z), (1− abt) = (1− at) ∗ (1− bt) so

(1− abt) =

(
∞∏
i=1

(1− ti)M(a,i)

)
∗

(
∞∏
j=1

(1− tj)M(b,j)

)

By virtue of Equation (3) the(1− tn) term in this last product will be the “sum” of all products

(1− ti)M(a,i) ∗ (1− tj)M(b,j) = (1− t[i,j)(i,j)M(a,i)M(b,j)

where[i, j] = n. This finishes the proof.
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