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Mathematics is not self evident. The ancient Greeks wanted it to be so, but they missed the
interplay between different branches of mathematics and the surprising consequences of this. This
is an account of such a phenomena. The story starts with an observation in 1629 about roots of
polynomials, touches the modern ideas of Witt vectors and Grothendieck groups and suddenly we
are able to easily obtain some formulas from the classical theory of counting necklaces. The ideas,
and connections, presented here are not new, (see, for example [9, 5, 6]) and maybe not even of
practical value, but the connection between these seemingly unrelated ideas is another example of
the amazing subtlety and consistency of mathematics.

Newton'’s ldentities

In his 1629 workL'invention nouvelle en l'algbre the Dutch mathematician Albert Girard
noted that there was a connection between the coefficients of the eqtfationt” ! — bt" =2 4

ct" 3 — dt"* + ... and the sums of thketh powers of the roots,, z,, .., z,,, i.e.

1 +To+-rx, = a
v+ as 4l = a®—2b
Bl o2 = a®—3ab+3c

v+ oy -t = a* —4a®b + dac + 20 — 4d

(see, for example, [10, p. 86]).
A few years later in hig\rithmetica universaligagain see [10, p. 95]) Isaac Newton discovered

that the generalization of Girard’s equations was the recursive series of identities

Theorem 1 (Newton’s Identities) Let x4, x5, x3, ..., x,, be the roots, counted according to multi-

plicity, of the polynomial equation

£+ pit" T 4 ot P 4 4 Pt 4 py =0



and let

k k k
Sp,=2]+Ty+ -+,

fork=1,2,3,.... Thenforeactk > 1

Sk + D1Sg—1 + P2Sk—2 + -+ pr_151 + kpr =0

Newton did not provide a proof, nor shall | at the present. Of course Newton was thinking
about the case where the coefficieptsvere real, but this works equally well in any algebraically
closed field of characteristic 0. Note also we are assuming that the coefficieri for j > n.

Newton’s identities allow one to calculate therecursively and his application was to estimate
the largest positive real root (assuming multiplicity 1 and that it is actually the largest complex
root in modulus) by{/s;, for moderately larges. This is, of course, not useful today. A more
interesting application is to calculate the characteristic polynoyitial = det(\ — A) of an xn
matrix A. If the eigenvalues ofl arex,, ..., z, then the eigenvalues of* arez?%, ..., z* and
thuss, = tracg A*), which is easily calculated. Knowing the, k¥ = 1,...,n one can work
backwards in Newton’s identities to find the coefficients of the characteristic polynomial.

There are similar classical identities to fid= =% + - - - 4 z* for negative values of which

are more to the point of this article.

Theorem 2 (Newton’s Identities) Let x4, xo, ..., x,, be the roots (in an algebraically closed field
of characteristic 0) of the unitary polynomialt) = 1 + ait + ast? + - - - + a,t". Assumer; = 0

for j > nandlets; = 27 4 ---xj for j = —1,-2,-3,.... Thenfor allk > 0

kap + ap—15—1 + ap_1S—o+ -+ a1Sp_1 +s5_r, =0

Proof: From the factorization
alt) = (1 — a7 ) (1 —z3') - (1 — 2, ')
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it follows that the logrithmic derivative

a'(t) N T —x,;!
a(t) 1—ax7't 1—a; 1t
Multiplying by —t gives
a'(t) r 't x 't
= do

a(t)  1—a7lt 1 xlt

Now by the geometric series there is the formal series expansion

1 -1 —242
J
or
7t
J _ -1 —242 —343
J

Summing over allj gives the formal power series

a'(t)
a(t)
Multiplying both sides of this last equation byt) and equating the coefficients tffon both sides

-t

= S_lt + S_2t2 + S_3t3 + s (1)

gives the identities of the theorem.

| remark that a proof of Theorem 1 can be obtained as above by exparﬁé%gis a formal
power series in powers of L. | would also remark that using a computer algebra system it is often
easiest to calculate the ;, by using Equation (1), i.e. by expanding the left hand side as a power
series.

Now using the identities of Theorem 2 one can calculatesftffeom the coefficients; or vice
versa. Thus the sequenge;, s_, ... gives an alternate representation of the polynomial. |
will call these theghost coefficientof the polynomial and write gha(t)) = s_x.

It then makes sense given a unitary formal power sefi€s= 1 + a,t + ast® + - - - to define
ghost components gftu(t)) = s_, by means of the identities in Theorem 2. Of course, one can
not then assume that the, are sums of théth powers of the roots. Euler, however, did just that

when he calculated, correctly, the sums of the series

e}

=3

n=1
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for even integerg (see, for example, [7, p. 449]).
The ghost components, or more precisely the ghost series (i.e. the right hand of Equation (1))

acts somewhat like a logarithm. One can see this either from the equation

c;’((;f)) = —t%log a(t)

or by noting that the roots of the produdit)b(¢) are the elements of the “disjoint union” of the

roots of the two polynomials (“disjoint” so that multiplicities are counted correctly). From either
point of view one gets gha(t)b(t)) = ghy(a(t)) + gh,(b(t)).

| end this section with the following idea. Suppose tlkats a subring of an algebraically
closed field of characteristic 0, i.e. an integral domain of characteristic Oa(tgth(t) € R|[t]
be unitary polynomials with coefficients iR. | claim that there is a polynomial(t) € RJ[t]
so that gh(c(t)) = gh.(a(t))gh,(b(t)) for eachk > 0. From a practical standpoint one can
calculate the ghost componentsadt), b(¢) and then work backwards using the identity of The-
orem 2, but it is not clear that only finitely many coefficienfswill be non-zero nor is it clear
that, if R does not contain all rational numbers, that the coefficents will b&.ininstead the
argument is to lety, ..., x,, be the roots ofi(t), vi,...,y, be the roots ob(¢) in both cases
counted according to multiplicity. Now consider the polynomigl of degreemn whose roots
are{z;y;|1 <i <m,1 < j < n}. This clearly satisfies the correct identities on the ghost com-
ponents. But the coefficients oft) are symmetric polynomials in the roatsy;. Now in these
symmetric polynomials the coefficient of any particular monomialqin . ., y, is a symmetric
polynomial inzy, ..., z, and hence, by the Fundamental Theorem on Symmetric polynomials
(eg. [8, Thm. 11, p133]) a polynomial in the coefficientsadf), i.e. an element o?. But,
since the order in which we wrote down thgs clearly doesn’t matter, the resulting polynomial
in Ry, ...,y,) is again symmetric and hence a polynomial in the coefficientgf hence an
element ofR.
Witt Vectors

The preceding classical ideas can be axiomatized by the modern idea of (big) Witt vectors. It

is generally accepted that these Witt vectors made their official debut in the paper by Cartier [4]

even though they appear to have been discovered much earlier by E. Witt, for instance they had
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previously appeared in print in the form of a series of exercises in S. Lang’s textbook [8].
Let R be a commutative ring with unit, which | will view as a commutati<algebra. As a set
we definelV (R) to be the set of unitary power seriesfini.e W(R) = {a(t) = 1 + ait + ast* +
- € R][[t]]}. The addition ini¥(R) will be the usual multiplication of power series. | will use
the usual multiplicative notation, so that foft), b(t) € W(R), a(t)b(t) is the “sum",% is the
“difference”, and in an expression such(as- ¢)", r is the “coefficient”.
Central to this is thghost map This is the mapl/ (R) — tR][t]] given by

gh(a(t)) = —t o) = %loga(t)

If gh(a(t)) = fit+ fot>+- - - itis customary to calf; theith ghost component af(¢) or gh(a(t)).
The ghost map is a homomorphism of the additive grougd’oR) andt R|[[¢]] but rather than
viewing ¢ R[[t]] as an ideal of?[[¢]] | will view it as the produc{[;°, R via the mapfit + fot* +

-+ (f1, f2, f3,...) and thus addition is the same but multiplication is given by

(fit + fot® 4+ -+ ) % (ut + got® + -+ ) = (frg)t + (fag2)t* + - 2)

If R has noZ-torsion (i.e.nr = 0 impliesr = 0forn € Z,n # 0,r € R) then it is easily seen
from Newton’s Identities that gh is injective andifcontains the rational® then gh is bijective.
In this latter case the ring structure oR([[t]] given by (2) determines a ring structure Bi(R) so
that gh: W (R) — tR|[[t]] is an isomorphsim.

It is in fact true in general that there is a multiplicationlin( R) which makes gh a homo-
morphism of rings. There are probably more arguments for this than there are authors who have
written about Witt vectors (see, for example, [1, 2, 3]) but | must stick in my own two cents worth
with a sketch of my own favorite argument. It is clearly enough to establish this for the ring
Z[{a;}2,,{b:}52,, {ci}32,] of polynomials in infinitely many indeterminants so we can assume
that R is an integral domain with n@-torsion. Thus gh is injective and one only needs to show
that if f, g are in the image of gh thefy is also in the image. Now Newton’s Identities tell us that
thenth ghost component glia) depends only on the firstcomponents of and thus by a limit ar-

gument in the appropriate topology the result follows from my remark at the end of the last section



that givena, b € W (R) and any positive integer there is a- € W (R) with gh,(¢) = gh,(a)gh,(b)
fori <n.

Denoting our multiplication by it is seen that
(1 —7t™) % (1 — st") = (1 — p/dgm/dgmn/dyd g — (m n) 3)
where(m, n) is the greatest common divisor of, n. This can be checked by noting that
gh(1 — 7t™) = mrt™ + mr*t*™ + mr*t>™ + ...

In particularl — ¢ is the multiplicative identity. (The astute reader will note that this differs from
some authors such as [9, 2] whéte— ¢)~! is the multiplicative identity.)

In generallV (R) is not anR-algebra, however there is a fairly common type of ring for which
W(R) is an R-algebra. This is &inomial ring, i.e. a ring with noZ-torsion in which for each

r € R and positive integern,

r\ _ r(r—=1)---(r—n+1)
n n!
is an element of?. For example the ring of integers and any ring contairfghig a binomial ring.
For a binomial ring there is a map: R — W (R) given by
ro__ - _1\n r n
) = (1t = 3 (1)
which imbedsR as a subring oft’(R). More generally

-y =3 (1) e

n=0

is an element of¥/(R). We note that
gh((1 — t™)") = mrt™ + mrt>™ + mrt*™ + - ..

which, incidentally, gives a proof (letting. = 1) that\ is an injective ring homomorphism.

The main result of this section is essentially the first proposition of [9, p. 113]. | remind the
reader tha{ | below refers to the “sum” i/’ (R). Also, at this point | will start writingz instead
of a(t).



Proposition 3 Let R be a binomial ring. Then each € W (R) can be written uniquely in the

form

a=JJa-tmym

m=1

for appropriatery, o, ... € R.

Sketch of Proof: Suppose gtu) = fiut™ + frmiit™ ™t + -+ - for somem > 1. It follows easily
from Newton’s identities thaf,, is divisible bym in R so thena(1 — ¢t™)~(/=/™ ¢ W(R) and
gh(a(1 —t™)~Um/m)) = for all i < m + 1. Thus successively “subtracting” Witt vectors of the
form (1 — ¢™)"™ from a produces a sequence of elementdlifR) converging to the zero Witt

vector. An appropriate limit argument would clean up the details.

Example 4 | illustrate the constructive approach above by calculating the decomposition of the

Witt vectora = 1 — 5t € W(Z). | first calculate
gh(a) = 5t + 25¢% + 125¢3 + 625¢* + 3125¢° + 15625t° + - - -
| now note that gh(1 — ¢)®) = 5t + 5t + 5% + - - - SO
gh(a(1 —t)7°) = 20¢* + 120t + 620t* + 3120¢° + 15620t° + - - -

But gh((1 — ¢?)1) = 20t 4 20t* + 20¢5 + - - - so

gh(a(1 —)7°(1 — ¢*)7'%) = 120> + 600¢* + 3120t° + 15600¢° +- - - -
Next gh((1 — 3)%° = 120t + 120¢% - - - - o)

gh(a(1 — t)=5(1 — t*)71%(1 — £*)7*%) = 600t* 4 3120t + 15480t + - - -

Finally as600/4 = 150,3120/5 = 624 and15480/6 = 2580 | conclude that

a=(1- t)5(1 _ t2)10(1 _ t3)40(1 _ t4)150(1 _ t5)624(1 _ t6>2580 .

Assuming that: € W (R) has the factorization = [[°_,(1 — ™)™ then it is seen that the

nth ghost component is
gh,(a) = Z drq
dln
A straightforward application of the Bbius inversion formula gives
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Proposition 5 Leta € W (R) whereR is a binomial ring. Suppose
gh(a) = git + got® + gst® + - --

Thena =[] ~_, (1 —t™)™ where

)

dlm

wherey is the Mobius function.

The Grothendieck — Burnside ring

In this section | construct the Grothendieck — Burnside ring of [5] in the special case of the
infinite cyclic group. In [5, 6] this is constructed for any profinite graripbut | prefer to avoid all
the technicalities involved. Thus lét denote the infinite cyclic group.

A (finite) G-space(S, o) then consists simply of a finite séttogether with a permutation
of S. ThusG acts onS by n € G acting onz € S by ¢"(x). Two G-spaceg S, o), (T, 7) are
isomorphic if there is a bijection : S — T with Tu = uo. If (S, 0), (T, T) are twoG-spaces then
there is a join(S| | 7,0 U ) given by S| | T being the the disjoint union &f and7" and

[ oo(x) ifzxes
JUT(x)_{T(x) ifzreT

There is also the cartesian produetspace(S x 7,0 x 7) where, of courseg x 7(x,y) =
(o(2), 7(1)).

I now let$2 be the Grothendieck group of the class of these (firitespaces, i.e) is the free
abelian group generated by isomorphism clagSes| of G-spaces modulo the relatiofi| | 7', oL
7| =[S, 0]+ [T, 7]. Itis easily seen that the cartesian product operation induces a prodQcmn
that(2 is a commutative ring.

Once again we have a ghost map. Here we define@h- tZ][t]] by GN[S, o] = "7, Gh,([S, o])t"
where Gh([S, o]) is the number of elements 6fleft fixed by the action of the subgroup Gfgen-
erated byn, i.e the number of elements 6fleft fixed by the permutation™. This is well defined

on isomorphism classes and is easily seen to be compatible with the ring structrarmhso



factors as a ring homomorphism G2 — tZ[[t]] where the latter ring is viewed as the infinite

product of the previous section.

The point is that this ghost map factors through the ghost map of the previous section, i.e. there

isamapy : Q@ — W(Z) so that the diagram commutes.

/@Z’ W(R)
Q N gh

tZ|[1]]

To see this, | first consider the case wheho) is a transitiveG-space, i.e.oc has only one
orbit, i.e. o is a cycle. Suppose that hasm elements. It is easily seen that has fixed points

only if m|n, i.e. o™ is the identity, in which case™ hasm fixed points. Thus
GN([S,0]) = mt™ + mt*™ + mt*" 4 ... = gh(1 — ™)

But every permutation is the product of disjoint cycles s@ mach class$S, o] is a sum of transitive
G-spaces. It follows that if factors as a product ef,, cycles of lengthn for m = 1,2,3, ... then
1 should be given by

O([S, o)) = (L= 0 (1= )21 =)

It is easily checked that this does in fact work. It should be noted that since we are working with

finite G-spaces that this “sum” is in fact finite, i.e,, = 0 for largem.

As a consequence of the above descriptiofh ohe obtains

Proposition 6 Let (S, o) be a finiteG-space with)([S, o]) =
[[;_,(1 —¢™™. Then the number of distinct orbits of elementsSobf lengthn under the

permutations is r,, and the total number of distinct orbits s >°_, 7,,,.

Necklaces



In this section | apply the preceding results to counting necklaces. It should be emphasized that
all the results here are classical, none-the-less I find the connection between these classical results
and the ideas presented above to be striking.

By a necklace witlw beads irc colors, | mean an arrangementobbjects (beads) afdifferent
colors around a circle. If the circle is rotated the resulting necklace is considered to be the same as
the original, however a flip may produce a different necklace.

A more formal way of describing this is the following: I8 be a set of: objects (the beads)
andC be a set ot elements (the colors). Then consider the $eff all functionsf : B — C.

Now let~ be a cyclic permutation of the s&, i.e.+ has order. Then there is a permutatienof
S given byo(f) = f o~. A necklace is an orbit ity of the permutatiom.

Thus (S, 0) is a G-space, so by Proposition 6 to count necklaces one need only calculate
¥([S, 0]). Butsince gh W(Z) — tZ[[t]] is an injection, the strategy is to first calculate(@ho])
and lift.

Now the main observation is thdtis a fixed point ofo* if and only if f is constant on each
orbit of v*. If k is relatively prime ton then~* again has only one orbit s must be constant,

i.e. Gh.([S,o]) = c. More generally, if(k,n) = d, (here and belowk, n) is the greatest common

divisor) themy* hasd orbits, on each of whiclf must be constant. Thus GiS, o]) = .

Example 7 Suppose | wish to know the number of necklaces with 6 beads of 5 possible colors.

By the above paragraph
Gh([S, 0]) = 5t + 25t* 4 125t + 25t* + 5t° + 15625t° + - - -

and is periodic of period 6. Using the technique of Example 4 (note even that the first 3 terms are

the same) | easily calculate
Y([S,0)] = (1= 1)°(1 = ¢%)10(1 — £7)"0(1 — £9)*
It follows from Proposition 6 that there abet 10 + 40 + 2580 = 2635 such necklaces.

Generalizing from the above example | note that by Proposition 6 of the last section, since
the order of each cycle ef dividesn, thaty([S, o]) = [, (1 — t%)". But gh(l — t¢) = dt? +
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dt*® + . + Zt" + - - so if we add the coefficients offor 1 < i < n we getZd = n. Hence the
coefficients of?, 1 < i < ninthe expansion of gfi1 —¢¢)"*) add tonr, and hence the coefficients

of t, 1 < i < nof Gh([S, o]) = gh(¥([S, ¢]) add ton (de rd>. By Proposition 6 the sum in
parentheses is the number of necklaces, and so one may conclude that the number of necklaces

with n beads inc colors is

n

1 — 1
el I (k,n)
- 221 Ghi([S, o]) - E c

k=1

But note that the number of times the terfrappears in the last sumdg?%) whereg is Euler’s

¢ function. And thus | have obtained the classical formula:

Theorem 8 The number of necklaces withbeads and: colors is
1 ny\ 4
20(G)e
dln

| now look at the problem of counting primitive necklaces witheads irc colors, let) (¢, n)
denote the number of these. A primitive necklace is one which is asymmetric under rotation, i.e.
corresponds to an orbit of lengthin S undero. Thus we see from Proposition® (¢, n) = r,
wherey([S,o]) = [],-_,(1 —t™)™. And from this and Proposition 5 | immediately obtain the

formula attributed to Col. Moreau (see [9]).

Theorem 9

e - L)

dn

wherey is the Mobius function.

Motivated by Examples 4,7 the reader might observe that the “coefficigmt’the expansion
(1 —ct) = [I-,(1 = ™) is also given by the same formu}g,,,,, 2(%)c? and hence

[e.9]

(1—ct) = H(1 — ¢)Mem)

n=1

This identity usually occurs in the literature by replacing each side by its “negative” as
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Theorem 10 (The Cyclotomic Identity) For each positive integer

1 00 1 M(e,n)
1—ct :nll(l—tn)

Thus from Example 4 one may conclude that5, 1) = 5, M (5,2) = 10, M (5,3) = 40, M (5,4) =
150, M (5,5) = 624 and M (5, 6) = 2580 etc.
So far the multiplicative structure ¥ (Z) has not played much of a role. As my last result, |

derive an identity from [9] using Witt vector multiplication.

Theorem 11 For integersi, j let (i, j) denote the greatest common divisor dhd] be the least

common multiple. Then for all positive integer$, n,

M(ab,n) = Y (i, §)M(a, i) M(b, )

[i’j]:n
Proof: M (ab, n) is the “coefficient” of(1—¢") in the expansiofil —abt) = []>_, (1 —¢™)M(abm)
by the previous theorem. But i (Z), (1 — abt) = (1 — at) x (1 — bt) SO

(1 —abt) = (ﬁ(l - ti)M@vi)) * (ﬁ(l _ tj)M(b,j)>

i=1 j=1

By virtue of Equation (3) thél — ™) term in this last product will be the “sum” of all products

where[i, j] = n. This finishes the proof.
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