
Surface Story
Part III

Barry H Dayton

barryhdayton.space

Table of Contents

1. Chapter 1 in Part I

2. Chapter 2 in Part II

3. Chapter 3 in Part II

4. Chapter 4 in Part II

5. Chapter 5 Topology and Complex Curves

5.1. Chromatic Number 226

5.2. Global Functions for Chapter 5 230

5.3. Topology of Hyperboloids 236

5.4. Normal form for Complex Conics 240

5.5. Normal form for Complex Cubics 246

5.6. Topology of Complex Projective Solution Space of smooth plane Conics 247

5.7. Topology of Complex Projective Solution Space of smooth plane Cubics 261

References 278

The author makes no representations, express or implied, with respect to this documentation or so�ware it describes,

including, without limitation, any implied warranties of merchantability, interoperability or fitness for a particular

purpose, all of which are expressly disclaimed. Use of Mathematica and other related so�ware is subject to the terms

and conditions as described at www.wolfram.com/legal .

In addition to the forgoing, users should recognize that all complex so�ware systems and their documentation contain

errors and omissions. Barry H. Dayton and Wolfram Research a) shall not be responsible under any circumstances for

providing information or corrections to errors and omissions discovered at any time in this book or so�ware; b) shall

not be liable for damages of any kind arising out of the use of (or inability to use) this book or so�ware; c) do not

recommend the use of the so�ware for applications in which errors or omissions could threaten life, or cause injury

or significant loss.

Mathematica and Wolfram Language are trademarks of Wolfram Research Inc.

225 | SurfaceStoryPartIII.nb

5. Topology And Complex Curves
In this appendix we will change from algebraic geometry to topology, specifically the maps between

surfaces may only be continuous, not necessarily projective linear transformations, eg. fractional linear

transformations. Also, later in this appendix we will be interested in complex curves rather than just

real ones. In general our global function naming convention will not follow our previous rules, however

they will appear at the end of GlobalFunctionsNS.nb The reader interested in this topic may not need

to read the previous chapters although some reference to earlier chapters of this book will occur.

In section 5.1 using the chromatic number we show that the sphere is not topologically equivalent to

the torus or saddle surface. On the other hand, in 5.2 and 5.3 we show that the projective hyperboloid

and saddle surface are topologically equivalent to the to the torus by giving explicit invertible continu -

ous functions, known as homeomorphisms. In sections 5.4 and 5.5 we redo some material in my Plane

Curve Book on normal forms correcting mistakes and extending them to the complex domain. And

finally in sections 5.6 and 5.7 we give explicit descriptions of the known topological structure of the

complex solution spaces of smooth plane conic and cubic curves.

This stand alone version of Chapter 5 uses some information from my Plane Curve Book and Surface

Story version 1 but can be read separately. The Mathematica GlobalFunctionsNS.nb notebook for my

Surface Story has been updated to include the main functions in this appendix for those who want to

experiment with my code.

5.1 Topology of Surfaces -- Chromatic Number

While I have viewed Algebraic Geometry as the study of projective linear transformations Topology is

the study of continuous functions. In this book topological spaces will be subspaces of projective real

or complex spaces. The main question is now When are two surfaces topologically equivalent. If one

can find a bi-continuous invertible function between the surfaces, they are topologically equivalent. If

we work in the affine domain the invertible functions should be extend to the projective closure of the

affine surface.

But if we can't think of an obvious equivalence how can we prove that there is none? Topologists then

depend on surface invariants preserved by topological equivalence. O�en they rely on homology or

homotopy groups to get these invariants. I don’t want to go into this subject in this book. One visual

invariant is easy to explain and see, even if it not necessarily easy to prove, is the chromatic number of a

surface.

These derive from the famous Four Color Theorem which is normally stated on the affine plane. It

derives from the number of colors a cartographer needs in coloring a map where geographic or politi -

cal regions are separated by continuous curves or curve segments. These concept extends not just to

the plane but any topological, two dimensional, surface. The number of colors necessary is called the

SurfaceStoryPartIII.nb | 226

chromatic number .

For the plane or sphere the chromatic number is 4, this is known as the Four Color Theorem . This is

not trivial, the problem goes back to the 1850' s when DeMorgan proposed this as a problem from

cartography to the mathematical community . In 1879 Alfred Kemp proposed a proof which later was

seen to have a flaw . However in 1890 Percy Heawood showed his method did show that at most 5

colors are needed for the plane, he, Heawood, also gave a formula for the number of colors needed for

other surfaces depending on their genus which is correct except for the Klein bottle but the proof did

not cover the plane and sphere.

But going from 5 colors to 4 is difficult, no one has ever displayed a map on the plane or sphere which

can not be colored with 4 colors. But no one has ever come up with a theoretical reason why one

couldn’t do it. What mathematicians have done is to show that there are only finitely many configura -

tions that could not have a 4 coloring so if people could color all of these with 4 colors then we would

know 4 colors are sufficient. But there are a large number of of these configurations, they have many

regions and are hard to enumerate. So it is impractical to color all these manually. In 1976 Kenneth

Appel and Wolfgang Haken used a computer to attempt to color all of these and claimed the 4 color

problem was solved. Your author was at a large math conference at the time and many mathemati -

cians were skeptical, to them a computer calculation was not a proof. But many proofs do divide the

problem into cases, just in this case there were thousands but, in my opinion, that should not affect the

validity of the proof. But others felt the use of computer was fine but the program need to be carefully

validated. In fact, it found to have errors which were introduced by the programmers, not the com -

puter. Since then several more complicated computer methods have been used and most mathemati -

cians are now satisfied that 4 colors are sufficient. I mention this example because it is the first exam -

ple of the computer being an integral part of a proof.

Earlier there were some who claimed that even 3 colors are sufficient. But it is easy to show that is not

correct, one needs only to show one partition that can not be colored by 3 colors. An example on the

sphere is

Out[]=

Region 4 is the outside of the circle containing 1,2,3. In this example each region meets each other

region in an arc. Therefore each region must have a different color. This shows 4 colors are necessary.

227 | SurfaceStoryPartIII.nb

The chromatic number of the sphere is then 4.

The point of this discussion is that if a surface is partitioned in n colors then any surface homeomorphic

(topologically equivalent) also has a partition with n colors. Any homeomorphism will preserve the

partition. So to show two surfaces are NOT homeomorphic it is enough to show they have different

chromatic numbers. I use this to show that the sphere is not homeomorphic to a torus. The following

partition shows the torus has chromatic number at least 7, it actually is 7 exactly but we don’t need

that fact.

Out[]=

The 7 colors are white, maroon, blue, green, brown, red and yellow. These different views show each

region meets each other region so we need at least 7 colors. We have proved the sphere is not topologi -

cally equivalent to a torus! FYI this graphic was drawn by Mathematica using a parameterization of the

torus given in the next section.

In sections 5.2, 5.3 below I will show that projective hyperboloids are topologically equivalent to a

torus. So we should be able to find a 7 coloring of these surfaces with each color touching each other

color. Unfortunately because , unlike the torus, these are not affine surfaces it gets messy and I do not

know of a nice example. But I do have nice 6 colorings of these spaces which show their chromatic

number is at least 6, in particular they are not topologically equivalent to spheres by the 5 color theo -

rem for the sphere which, as we saw, is considerably easier than the 4 color theorem.

For the standard hyperboloid x2 + y2 - z2 = 1 here are some graphics.

SurfaceStoryPartIII.nb | 228

Out[]=

The small light colored balls show the red and blue regions are connected in projective space.

 For the saddle surface z = x y we have

Out[]= SSGraphic SSGraphic

Here it is less obvious that the red, green, cyan and magenta regions are connected projectively. The

following graphic showing also 4 lines on the surface help.

Out[]=

I claim that the infinite points of these lines, which must lie in the projective surface, are arbitrarily near

both affine components of these regions. For example the red region is given by -2 ≤ y ≤ 2 and x ≤ -3

or 3 ≤ x.

In[]:= lr = {4 - 8.420822433864302` t, -0.7`, -2.8` + 5.8945757037050095` t};

The infinite point is {-8.43082 , 0, 5.89458 , 0} from Section 1.10 .2

However if we consider the point in the lower component

In[]:= lrp = lr /. t → 100

Out[]= {-838.082, -0.7, 586.658 }

229 | SurfaceStoryPartIII.nb

which is equivalent to the projective point

In[]:= Append [lrp, 1] / 838.082 * 8.43082

Out[]= {-8.43082, -0.00704176 , 5.90158, 0.0100597 }

Likewise in the upper component

In[]:= lrn = lr /. t → -100

Append [lrn, 1] / 846.082 * -8.42082

Out[]= {846.082, -0.7, -592.258 }

Out[]= {-8.42082, 0.00696691 , 5.89458, -0.00995272 }

Both of these projective points are very close to the infinite point of this line as claimed .

5.2 Global Functions for Chapter 5

In this section we give some global functions that we will need in the sequel. These give continuous

functions but are not, in general, algebraic. The reader is not expected to read this section now but

these functions are needed in the sequel and are given here so as to not interrupt the story later with

the definitions. These functions will be available to users of Mathematica in the GlobalFunctionsN 
S.nb notebook which will be updated when this chapter is posted.

Hyperbola

Our standard hyperbola is

In[]:= hyp = x^2 + y^2 - z^2 - 1;

We now give a parameterization of this hyperbola on the square -π /2 ≤ u, v ≤ π /2

In[]:= HparSpace :=

ContourPlot [{Tan[u] Tan[v] ⩵ 1}, {u, -Pi / 2, Pi / 2}, {v, -Pi / 2, Pi / 2}, ContourStyle → Red]

In[]:= Show [HparSpace , ImageSize → Small]

Out[]=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

The red line will map to maps to the infinite line of hyperbola. This red line is given by x+y=Pi/2 or x+y=-

Pi/2. One reason for this somewhat non-standard parameterization of the hyperboloid is that it takes

SurfaceStoryPartIII.nb | 230

the square -π /2 ≤ u, v ≤ π/2 which is compact, to the entire projective hyperboloid which is also

compact.

The parameterization is

In[]:= Hyp := 
1 + Tan[u] Tan[v]

-1 + Tan[u] Tan[v]
,

Tan[u] - Tan[v]

-1 + Tan[u] Tan[v]
,

Tan[u] + Tan[v]

-1 + Tan[u] Tan[v]


Usage: for point in HparSpace -Pi /2 ≤ u, v ≤ Pi /2 not on infinite red line the following places a point

on the standard hyperbola

In[]:= hp = Hyp /. Thread [{u, v} → {.3, -.8}]

hyp /. Thread [{x, y, z} → hp]

Out[]= {-0.51687, -1.01553, 0.546302 }

Out[]= 1.11022 × 10-16

An important feature of this parameterization is that we have an inverse function on the interior. If the

point p is not on the hyperbola to a sufficient tolerance an error message will be produced.

In[]:= InvHyp [p_] := Module {solab, a, b, c, d, ab, a1, b1, t0},

solab = a →
-1 - 1 - c2 + d2

c - d
, b →

c

c-d
-

d

c-d
+

c 1-c2+d2

c-d
-

d 1-c2+d2

c-d

c + d
,

a →
-1 + 1 - c2 + d2

c - d
, b →

c

c-d
-

d

c-d
-

c 1-c2+d2

c-d
+

d 1-c2+d2

c-d

c + d
;

ab = solab〚1〛 /. {c → p〚2〛, d → p〚3〛};
{a1, b1} = {a, b} /. ab;

If[Norm [(Hyp /. {u → ArcTan [a1], v → ArcTan [b1]}) - p] < .0005,

Return [{ArcTan [a1], ArcTan [b1]}]];

ab = solab〚2〛 /. {c → p〚2〛, d → p〚3〛};
{a1, b1} = {a, b} /. ab;

If[Norm [(Hyp /. {u → ArcTan [a1], v → ArcTan [b1]}) - p] < .0005,

Return [{ArcTan [a1], ArcTan [b1]}]];

Echo [p, "Possible Numerical Error"];

{}

In[]:= InvHyp [hp]

Out[]= {0.3, -0.8}

231 | SurfaceStoryPartIII.nb

In[]:= hp = {0, 1, 0}

pq = InvHyp [hp]

Hyp /. Thread [{u, v} → pq]

Out[]= {0, 1, 0}

Out[]= - π
4
,

π
4


Out[]= {0, 1, 0}

The other important thing is that for every u Hyp takes {u,-v} to the same point as {u,v}, and also takes {-

u,v} to {u,v} for every u,v. Because zero denominators are involved we must use limits for this

evaluation.

In[]:= rr = RandomReal [{-Pi / 2, Pi / 2}]

Out[]= 0.981721

In[]:= Limit [Hyp /. Thread [{u, v} → {rr, t}], t → -Pi / 2]

Limit [Hyp /. Thread [{u, v} → {rr, t}], t → Pi / 2]

Out[]= {1., -0.668218 , 0.668218 }

Out[]= {1., -0.668218 , 0.668218 }

Likewise

In[]:= Limit [Hyp /. Thread [{u, v} → {t, rr}], t → -Pi / 2]

Limit [Hyp /. Thread [{u, v} → {t, rr}], t → Pi / 2]

Out[]= {1., 0.668218 , 0.668218 }

Out[]= {1., 0.668218 , 0.668218 }

Already the topologists know the image of this parameterization will give topologically a torus so this

invertible parameterization gives a proof that the projective hyperboloid is a topological torus, we will

give a direct proof shortly.

Torus

We use this equation for our standard torus

In[]:= toruspipi2 :=
9 π4

16
-
5 π2 x2

2
+ x4 -

5 π2 y2

2
+ 2 x2 y2 + y4 +

3 π2 z2

2
+ 2 x2 z2 + 2 y2 z2 + z4

In[]:= TGraphic := ContourPlot3D [toruspipi2 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5},

ContourStyle → Opacity [1], Mesh → None, Boxed → False, Axes → False]

SurfaceStoryPartIII.nb | 232

In[]:= Show [TGraphic , ImageSize → Tiny]

Out[]=

A parameterization is given on the entire square -π ≤ r, t ≤ π , t is an angle about {0,0,0} while r is an

angle about the center circle of radius π .

In[]:= Tpar :=

 π
2

- r Cos[t],  π
2

- r Sin[t], π 2

4
- - π

2
- r2  r ≤ 0

 π
2

+ r Cos[t],  π
2

+ r Sin[t], -
π 2

4
- - π

2
+ r2  r > 0

0 True

Usage

In[]:= par = {2 Pi / 3, -Pi / 4}

tp = Tpar /. Thread [{r, t} → par]

N[tp]

Out[]=  2 π
3

, -
π
4


Out[]=  7 π
6 2

, -
7 π

6 2

, -
2 π
3



Out[]= {2.59168, -2.59168, -1.48096 }

In[]:= toruspipi2 /. Thread [{x, y, z} → N[tp]]

Out[]= 1.42109 × 10-14

Again an important property of this parameterization is we have an inverse

In[]:= tangle [p_] := With [{a = VectorAngle [p, {1, 0}]}, If[N[{Cos[a], Sin[a]}] ⩵ p / Norm [p], a, -a]]

In[]:= InvTor [{x_, y_, z_}] := Piecewise [{{{Pi / 2 - Norm [{x, y}], tangle [{x, y}]}, z ≥ 0},

{{-Pi / 2 + Norm [{x, y}], tangle [{x, y}]}, z < 0 }}]

In[]:= InvTor [tp]

Out[]=  2 π
3

, -
π
4


These parameterizations with similar (factor of 2) domains show directly that the standard hyperbola

and standard torus are topologically equivalent, that is, homeomorphic. In fact we can map the torus

to the hyperbola and hyperbola to torus directly

233 | SurfaceStoryPartIII.nb

In[]:= T2H[{x_, y_, z_}] := Hyp /. Thread [{u, v} → .5 InvTor [{x, y, z}]]

In[]:= H2T[{x_, y_, z_}] := Tpar /. Thread [{r, t} → 2 InvHyp [{x, y, z}]]

Recall

In[]:= N[tp]

Out[]= {2.59168, -2.59168, -1.48096 }

In[]:= hp1 = T2H[tp]

Out[]= {-0.164525 , -1.24969, -0.767327 }

In[]:= hyp /. Thread [{x, y, z} → hp1]

Out[]= -5.55112 × 10-16

In[]:= H2T[hp1]

H2T[hp1] - N[tp]

Out[]= {2.59168, -2.59168, -1.48096 }

Out[]= 2.22045 × 10-15, 4.44089 × 10-15, -4.44089 × 10-16 

Saddle Surface

Now consider the saddle surface z= x y. In Chapter 2 of the Surface Story it is shown that the saddle

surface is algebraically equivalent to the standard hyperbola. Therefore we can use our parameteriza -

tion of the hyperboloid above to give parameterization is given on -π /2 ≤ s, t ≤ π /2 by

In[]:= Ht := {{1.421753448878254` , 2.4001312247824407` ,

-1.4217534488782626` , -2.4001312247824362` },

{-1.3682399203220887` , 0.05585142943475707` , 0.7762628086454613` ,

1.1281027939185155` }, {-2.550704470740892` , -1.499868080914514` ,

0.08976727903245796` , 2.957640849193627` }, {1.1547005383792515` ,

0.5773502691896257` , -1.1547005383792515` , -0.5773502691896266` }}

In[]:= Ht // MatrixForm

Out[]//MatrixForm=

1.42175 2.40013 -1.42175 -2.40013

-1.36824 0.0558514 0.776263 1.1281

-2.5507 -1.49987 0.0897673 2.95764

1.1547 0.57735 -1.1547 -0.57735

In[]:= SSpar [{s_, t_}] := Simplify [TransformationFunction [Ht][Hyp /. {u → s, v → t}]]

This is complicated

SurfaceStoryPartIII.nb | 234

In[]:= SSpar [{s, t}]

Out[]=  6.6197 + Tan[s] (1.6946 - 1.6946 Tan[t]) - 6.6197 Tan[t]

3. - 3. Tan[t] + Tan[s] (-1. + 1. Tan[t])
,

-4.32379 + Tan[s] (1.44126 - 0.41593 Tan[t]) + 1.24779 Tan[t]

3. - 3. Tan[t] + Tan[s] (-1. + 1. Tan[t])
,

-9.54073 + Tan[s] (-2.44237 + 0.704834 Tan[t]) + 2.75333 Tan[t]

3. - 3. Tan[t] + Tan[s] (-1. + 1. Tan[t])


The infinite part is (x - ssa) (y - ssb) = 0 where

In[]:= ssa = N[ArcTan [3]]

ssb = N[ArcTan [1]]

Out[]= 1.24905

Out[]= 0.785398

Thus the parameter space for our saddle surface looks like this where the red lines map to the infinite

curve of the saddle surface .

In[]:= SSparSpace = ContourPlot [{x ⩵ ssa, y ⩵ ssb}, {x, -Pi / 2, Pi / 2},

{y, -Pi / 2, Pi / 2}, ContourStyle → Pink, ImageSize → Small]

Out[]=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Again we can find and inverse using the inverse we already have

In[]:= InvSS [{x_, y_, z_}] := InvHyp [TransformationFunction [Inverse [Ht]][{x, y, z}]]

Warning : this only takes actual points given numerically . Does not give a formula. It is useful to note

that we can easily find points on the saddle surface by picking real numbers a,b and the point is then

{a, b, a b}.

In[]:= inp = InvSS [{2, 3, 6}]

Out[]= {-0.166184 , 0.915161 }

In[]:= SSpar [inp]

Out[]= {2., 3., 6.}

235 | SurfaceStoryPartIII.nb

Finally we get, for actual points, a map from the Torus to the Saddle Surface showing that these are

also homeomorphic.

In[]:= T2SS [{x_, y_, z_}] := SSpar [.5 InvTor [{x, y, z}]]

The inverse is

In[]:= SS2T [{x_, y_, z_}] := Tpar /. Thread [{r, t} → 2 InvSS [{x, y, z}]]

In[]:= t236 = SS2T [{2, 3, 6}]

Out[]= {-0.488395 , 1.83943, 0.966279 }

In[]:= toruspipi2 /. Thread [{x, y, z} → t236]

Out[]= 0.

In[]:= T2SS [t236]

Out[]= {2., 3., 6.}

Note the infinite curve on the saddle surface comes from

In[]:= TSSGraphic =

Show [TGraphic , ParametricPlot3D [Tpar /. {r → 2 ssa}, {t, -Pi, Pi}, PlotStyle → White],

ParametricPlot3D [Tpar /. {t → 2 ssb}, {r, -Pi, Pi}, PlotStyle → White],

ViewPoint → Below]

Out[]=

5.3 Topology of Hyperboloids

In this section I show that all projective hyperboloids are topologically equivalent to the torus. In 5.1

we showed the torus is not equivalent to the sphere so smooth projective quadric surfaces are not the

SurfaceStoryPartIII.nb | 236

same topologically.

I suggested that the reader not read Section 5.2 carefully, but if you did then you may not wish to read

this section which is a more readable but less computational version of 5.2.

I f first show the hyperboloid is topologically a torus. Here we have explicit invertible continuous

functions defined in 5.2 T2H and H2T. See examples in 5.2.

In[]:=

T2H

H2T

Then since all hyperboloids are equivalent by projective linear transformations which are continuous

they are all topologically equivalent to the torus.

For the saddle surface z = x y in section 5.2 we introduced a parameterization of the saddle surface

SSPar on the square -(π /2) ≤ x ≤ π /2 and -(π /2) ≤ y ≤ π /2. We identified 2 lines in this square

which map to the infinite curve x = ssa and y = ssb where ssa is approximately 1.24905 and ssb is

approximately 0.785398. This parameterization has an inverse InvSS.

On the other hand we gave the parameterization of the Torus by Tpar on the square -π ≤ x ≤ π and

-π ≤ y ≤ π with inverse InvTor . In this case there are no infinite points to worry about.

We can go back and forth between these parameter spaces by multiplication or division by 2. Then we

can map the torus to the hyperboloid by sending a point on the torus by applying InvTor, dividing by 2

and applying SSpar. We called this T2SS with inverse SS2T. The points of the torus that land in the

infinite part of the saddle surface come from the points of the torus parameter space with x = 2 ssa and

y =2 ssb. So the picture of the points on the torus going to affine points of the saddle surface looks like

this with the white curves removed. That is, this picture shows the actual domain of T2SS as defined in

5.2.

237 | SurfaceStoryPartIII.nb

In[]:= TSSGraphic =

Show [TGraphic , ParametricPlot3D [Tpar /. {r → 2 ssa}, {t, -Pi, Pi}, PlotStyle → White],

ParametricPlot3D [Tpar /. {t → 2 ssb}, {r, -Pi, Pi}, PlotStyle → White],

ViewPoint → Below, ImageSize → Small]

Out[]=

I claim that that the function T2SS can be extended on the whole torus as a function to the projective

saddle surface.

Here is a graphic showing the map between a saddle surface and a torus. The curves correspond by

color. The two graphics on the right of tori show different views of the same torus.

Out[]=

It is easy to find parametric functions giving the horizontal colored circles on the hyperboloid. The

mapping sends them to the more complicated curves on the torus. The white curve on the torus is the

image of the infinite curve of the hyperboloid. I leave the details for the reader.

5.3.2 A topological Construction

We leave our study of topology with one more well known result.

Theorem : Suppose we have a continuous map from a plane square to a topological space  which

sends points on opposite side of a plane square to the same point of  . Then this map factors through the

torus. In particular f this map is 1-1 on the interior of the square and onto then  is homeomorphic to the

torus.

To be more specific we will use the square π /2 ≤ x, y ≤ π /2. If our map is called f then we are assum -

SurfaceStoryPartIII.nb | 238

ing f [{x, -π /2}] = f [{x , π /2}] for all x and f [{-π /2, y}] = f [{π /2, y}] for all y.

A reference for this theorem is the book Principles of Topology by Fred H. Croom, Dover Publications,

1989. This theorem is essentially his Example 7.4.2.

Croom's argument uses the idea of a quotient space. For any equivalence relation ~ on a topological

space  , Croom defines a new topological space /~ whose elements are the equivalence classes of ~.

From set theory there is an onto projection  :  ⟶ /~ sending each element to its class. One defines

a set in /~ to be open if its inverse image in  is open, making  continuous. Moreover, as Croom

notices, any function f : ⟶ factors through  , that is there is a function f * :  / ~ ⟶ with f = f * ∘ ,

our definition of the topology on /~ makes f * continuous. Moreover Croom’s Theorem 7.16 says that if

f is onto then f * is a homeomorphism.

Applying this to our map Hyp from the square to the torus then the relation that Hyp sends points {x,

-π/2} and {x, π /2} to the same point on the torus as well as with {-π /2, y} and {π /2, y} so defining the

relation ~ by {x, -π/2} ~{x , π /2}, {-π /2, y}~{π /2, y} with every interior point related only to itself shows

that quotient space is homeomorphic to the torus. But the hypotheses of our theorem above says our

continuous function also has the same quotient space so its image is also homeomorphic to the torus.

An easy modification of this is the classical result

Corollary : Suppose f is a continuous function on the real plane, or complex numbers, which is periodic

in in each variable with period 2 π , and let {a,b}~{c,d} if and only if a = b + 2 j π and c = 2 k π for

integers j, k. Then the quotient space ℝ2  ~ is homeomorphic to a torus and thus f can be viewed as

mapping the plane to a torus.

A useful tool here is to find a canonical point in our square equivalent, in the relation of the corollary,

to a point in the original square -π ≤ x, y ≤ π .

Later we will encounter doubly functions with periods 2π in both directions, to reduce to our parame -

ter square -π ≤ u, v ≤ π we use the following global function which is initiated here and our Global

Functions notebook.

In[]:= reduce2pipi [{a_, b_}] := Module [{c, d},

c = a; d = b;

While [c < -Pi, c = c + 2 Pi];

While [c > Pi, c = c - 2 Pi];

While [d < -Pi, d = d + 2 Pi];

While [d > Pi, d = d - 2 Pi];

N[{c, d}]]

For example let

In[]:= Clear [a, b]

a = {9.35, -17.12 };

b = reduce2pipi [a]

Out[]= {3.06681, 1.72956 }

239 | SurfaceStoryPartIII.nb

In[]:= a - b

Out[]= {6.28319, -18.8496 }

where

In[]:= (a - b) / 2 / π
Out[]= {1., -3.}

5.4 Normal Forms in Complex Algebraic Geometry

5.4.1 The cTransform

We now temporarily change our focus back to algebraic geometry, but unlike most of the rest of my

books we will look at complex algebraic geometry. We will take a new look at sections 7.3 and 7.5 in my

Plane Curve Book .

Our first tool is the cTransform. Here is the updated version with a new name for conics as well as

some other renamed subroutines. The important thing is that they all work in the complex case.

cTransform2 [f_, p_, x_, y_] := Module [{fh, ph, nh, t, cs, A, d},

d = tDegMD [f, {x, y}];

fh = Expand [t^d * (f /. Thread [{x, y} → {x / t, y / t}])];

ph = If[Length [p] ⩵ 2, N[Append [p, 1]], N[p]];

ph = ph / Norm [ph];

nh = {D[fh, x], D[fh, y], D[fh, t]} /. Thread [{x, y, t} → ph];

nh = nh / Norm [nh];

cs = Cross [nh, ph];

cs = cs / Norm [cs];

A = {cs, ph, nh}];

Here we have a curve f in 2 variables and a point p on the curve. This returns a 3⨯3 matrix such that the

Transformation Function takes p to the infinite point {0,1,0} and the tangent line to the infinite tangent

line at that point.

infiniteConicPoints2D [f_, x_, y_] := Module [{mf, rrl, sv}, mf = FromCoefficientRules [

Select [CoefficientRules [f, {x, y}], Total [#〚1〛] ⩵ 2 &], {x, y}];

rrl = RandomReal [{-5, 5}, 3].{x, y, 1};

sv = NSolveValues [mf ⩵ 0 && RandomReal [{-1, 1}, 3].{x, y, 1} ⩵ 0, {x, y}, Complexes];

{Append [sv〚1〛, 0], Append [sv〚2〛, 0]}];

In[]:= flt[p_, A_] := TransformationFunction [A][p]

SurfaceStoryPartIII.nb | 240

In[]:= FLTC2 [f_, A_, x_, y_] := Module [{fh, gh, AI, B, d, z},

fh = Expand [z^2 (f /. {x → x / z, y → y / z})];

AI = Inverse [A];

B = AI.{x, y, z};

gh = N[Expand [fh /. Thread [{x, y, z} → B]]];

Chop [gh /. {z → 1}, 1*^-10]

];

In Section 3.1 of my Plane Curve Book there is a global function tLine which finds the tangent line to a

curve at a point p on curve f . We change the name for convenience and add it to our global functions.

In[]:= tangentLine2D [f_, p_, x_, y_] := line2D [p, {D[f, y], -D[f, x], 0} /. Thread [{x, y} → p], x, y]

We now note that this works for complex conics. Here is an example

In[]:= Clear [f]

f = (.2 + ⅈ) x^2 - (3 + 8.32 ⅈ) x y + (4 - 2 ⅈ) y^2 + ⅈ x - 3 y + 4 - 5 ⅈ
Out[]= (4 - 5 ⅈ) + ⅈ x + (0.2 + 1. ⅈ) x2 - 3 y - (3. + 8.32 ⅈ) x y + (4 - 2 ⅈ) y2

A point on this conic is

In[]:= pf = {1, -0.007577844391223804` - 0.42500676635061163` ⅈ}
f /. Thread [{x, y} → pf]

Out[]= {1, -0.00757784 - 0.425007 ⅈ}
Out[]= 0. + 4.44089 × 10-16 ⅈ

In[]:= Cf = cTransform2D [f, pf, x, y]

Out[]= {{-0.177415 - 0.334953 ⅈ, 0.447326 - 0.484563 ⅈ, 0.386747 + 0.521398 ⅈ},
{0.677179 , -0.00513155 - 0.287805 ⅈ, 0.677179 },

{-0.16655 + 0.232069 ⅈ, -0.415163 - 0.625353 ⅈ, 0.429183 - 0.413255 ⅈ}}
First note this sends point pf to {0,1,0}. We use the extended flt function

In[]:= Chop [fltiMD [pf, Cf]]

Out[]= {0, 1.23208 + 0.00436189 ⅈ, 0}

which is equivalent to {0, 1, 0} in the projective plane by homogeniety.

Now the infinite line in projective 2-space is the line which contains {0,1,0} and {1,0,0}. So we can

indirectly check that the original tangent line goes to this line.

In[]:= tlf = tangentLine2D [f, pf, x, y]

Out[]= (0.478563 - 1.02142 ⅈ) - (0.137113 - 0.523119 ⅈ) x - (1.15776 + 0.82404 ⅈ) y
Here tangentLine2D is our new, less confusing name for tline in our plane curves global functions, this

is in the current GlobalFunctionsNS.nb.

241 | SurfaceStoryPartIII.nb

In[]:= tangentLine2D [f_, p_, x_, y_] := line2D [p, {D[f, y], -D[f, x], 0} /. Thread [{x, y} → p], x, y]

Our check is to show that the point {1,0,0} of the infinite line is in the image of a point of tlf via the Trans 
formationFunction determined by Cf.

In[]:=

In[]:= jf = fltiMD [{1, 0, 0}, Inverse [Cf]]

Out[]= {-0.577223 - 0.0878878 ⅈ, -0.188995 - 0.998123 ⅈ}
In[]:= tlf /. Thread [{x, y} → jf]

Out[]= 4.44089 × 10-16
- 6.66134 × 10-16 ⅈ

which does the trick .

5.4.2 The normal form for a conic -- Real Example

The normal form of a conic will be the parabola y = x2. Consider, for purposes of replication, the

pseudo random integer conic

In[495]:= conic1 := 1 + 10 x - 2 x2 - 2 y + 8 x y + y2

We can find a real point by using our plot to estimate a point we would like to use from this plot and

finding the closest point actually on the conic. Thus we pick

In[496]:= c1p = {1.0259093563540405` , -3.7953394709624946` };

In[]:= conic1 /. Thread [{x, y} → c1p]

Out[]= 0.

In[]:= Show [ContourPlot [conic1 ⩵ 0, {x, -5, 5}, {y, -5, 5}, ImageSize → Small],

Graphics [{Red, PointSize [.05], Point [c1p]}]]

Out[]=

-4 -2 0 2 4

-4

-2

0

2

4

We now apply the cTransform .

In[]:= Ac1 = cTransform2D [conic1, c1p, x, y]

Out[]= {{0.578058 , 0.350419 , 0.736923 },

{0.25289, -0.935565 , 0.246504 }, {-0.775819 , -0.0438672 , 0.629429 }}

SurfaceStoryPartIII.nb | 242

To see what we get we apply FLT.

In[]:= f1 = FLT3D [{conic1 }, Ac1, {x, y}]〚1〛
Out[]= -5.36143 - 2.14214 x + 5.36143 x2 + 7.77378 y

In[]:= ContourPlot [f1 ⩵ 0, {x, -3, 3}, {y, -4, 2}, ImageSize → Small]

Out[]=

-3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

So we already have a conic with vertical axis We have to get rid of the linear part, move the vertex of

this parabola to the origin and make the coefficients of x ^ 2 and y negatives. Using the trick we learned

in Chapter 2 rather than the method of Section 7.3 in the Plane Curves Book, a transform with matrix

In[]:= S1 = {{1, 0, a}, {0, b, c}, {0, 0, 1}}

Out[]= {{1, 0, {9.35, -17.12 }}, {0, {3.06681, 1.72956 }, c}, {0, 0, 1}}

should do the trick .

In[]:= f2 = FLT3D [{f1}, S1, {x, y}]〚1〛
MatrixRank : Argument {{1, 0, {9.35 , -17.12 }}, {0, {3.06681 , 1.72956 }, c}, {0, 0, 1}} at position 1 is not a

non -empty rectangular matrix .

Inverse : Argument {{1, 0, {9.35 , -17.12 }}, {0, {3.06681 , 1.72956 }, c}, {0, 0, 1}} at position 1 is not a non -empty

square matrix .

Out[]= 5.63164 (Inverse [{{1, 0, {9.35, -17.12 }}, {0, {3.06681, 1.72956 }, c}, {0, 0, 1}}].{x, y, 1})2

We see we want 5.36143 b = -7.77378 to make the coefficients of x2 and y negatives so

In[]:= bb = -7.7737816319831445` / 5.361426248281447`

Out[]= -1.44995

In[]:= f3 = f2 /. b → bb

Inverse : Argument {{1, 0, {9.35 , -17.12 }}, {0, -1.44995 , c}, {0, 0, 1}} at position 1 is not a non -empty square

matrix .

Out[]= 5.63164 (Inverse [{{1, 0, {9.35, -17.12 }}, {0, -1.44995, c}, {0, 0, 1}}].{x, y, 1})2

Now to get rid of the linear part we need -2.14214 xc a x = 0

In[]:= aa = -2.14214 / 10.7229

Out[]= -0.199772

243 | SurfaceStoryPartIII.nb

In[]:= f4 = f3 /. a → aa

Out[]= 5.63164 (0.199772 + 1. x)2, 5.63164 (0. + 0.689681 c - 0.689681 y)2, 5.63164 
And finally we can get rid of the constant part by

In[]:= cc = 5.575396993314872` / 5.361426248281447`

Out[]= 1.03991

In[]:= f5 = f4 /. c → cc

Out[]= 5.63164 (0.199772 + 1. x)2, 5.63164 (0.717205 - 0.689681 y)2, 5.63164 
So we arrive at our conical form

In[]:= Chop [Expand [f5 / 5.361426248281447`], 10^-5]

Out[]= 0.0419205 + 0.419682 x + 1.0504 x2, 0.540308 - 1.03915 y + 0.499633 y2, 1.0504 
Note if

In[]:= S2 = S1 /. Thread [{a, b, c} → {aa, bb, cc}]

Out[]= {{1, 0, -0.199772 }, {0, -1.44995, 1.03991 }, {0, 0, 1}}

In[]:= f6 = FLT3D [{conic1 }, S2.Ac1, {x, y}]〚1〛
Out[]= -7.08471 × 10-6 x + 5.36143 x2 - 5.36143 y

So if

In[]:= A1 = S2.Ac1

Out[]= {{0.733046 , 0.359182 , 0.61118 },

{-1.17346, 1.3109, 0.297132 }, {-0.775819 , -0.0438672 , 0.629429 }}

In[]:= Chop Expand FLT3D [{conic1 }, A1, {x, y}]〚1〛  5.361426248281447` , 1.*^-5 
Out[]= 1. x2 - 1. y

showing that the Transformation Function with matrix Ac brings conic1 to canonical form, up to a

constant multiple.

Following this example we can write down a general procedure. Note that this uses a random transfor -

mation so it will return a different transformation function each run. You should save the result with a

unique name for future use rather than re-run this function when working with the same curve. This

has a self check feature so the comment should give a normal form c x^2 -c y for some complex non-

zero number. If this is not correct or there is an error message then re-run the function to get a differ -

ent random transformation.

SurfaceStoryPartIII.nb | 244

normalForm4Conic [ff_, pp_, x_, y_] := Module {f, g, h, A, B, h0,

h1, h2, h3, h4, h5, cfa, aa, bb, cc, cps, rm, p, S, S2, srm, a, b, c},

rm = RandomReal [{-1, 1}, {3, 3}];

f = FLTC2 [ff, rm, x, y];

p = flt[pp, rm];

If[Abs[f /. Thread [{x, y} → p]] > 1.*^-11 , Echo ["p not accurate point"];

Abort []];

A = cTransform2 [f, p, x, y];

g = FLTC2 [f, A, x, y];

S = {{1, 0, a}, {0, b, c}, {0, 0, 1}};

h = FLTC2 [g, S, x, y];

h1 = Expand [b h];

bb = -Coefficient [h1, y] / Coefficient [h1, b x^2];

h2 = h1 /. {b → bb};

cfa = Coefficient [h2, x];

aa = -cfa〚1〛  Coefficient [cfa, a];

h3 = h2 /. a → -cfa〚1〛  Coefficient [cfa, a];
cc := -h3〚1〛  Coefficient [h3, c];

S2 = S /. Thread [{a, b, c} → {aa, bb, cc}];

B = S2.A.rm;

Echo [Chop [FLTC2 [ff, B, x, y], 1.*^-8], "Normal Form is "];

B

Applying to our previous example

In[497]:= normalForm4Conic [conic1, c1p, x, y]

» Normal Form is 3.10867 x2 - 3.10867 y

Out[497]= {{-0.636665 , -0.453268 , -1.06714 },

{-1.50554, 2.95103, 1.44589 }, {-0.696565 , -0.039386 , 0.56513 }}

Note rather than give normal form y = x2 it gives a multiple of that. This is because FLT3D works only

up to a constant.

If one runs a real conic but with a complex solution one will get a complex transformation.

In[499]:= B = normalForm4Conic [x^2 + y^2 - 1, {Sqrt [2], - ⅈ}, x, y]

» Normal Form is (1.27771 - 1.92135 ⅈ) x2 - (1.27771 - 1.92135 ⅈ) y
Out[499]= {{-0.507268 - 0.383603 ⅈ, -0.681544 + 0.138805 ⅈ, 0.578581 - 0.139048 ⅈ},

{0.317734 + 0.392038 ⅈ, -0.343997 - 3.13481 ⅈ, 0.382171 + 3.14761 ⅈ},
{-0.118401 + 0.235166 ⅈ, 0.166288 + 0.0837225 ⅈ, 0.0837225 - 0.166288 ⅈ}}

In[501]:= (y - x^2) /. Thread [{x, y} → fltMD [{.6, -.8}, B]]

Out[501]= -1.06581 × 10-14
- 1.06581 × 10-14 ⅈ

245 | SurfaceStoryPartIII.nb

 5.4.6 A complex example

For our second example we start with a pseudo - random complex integer example . Here we leave off

the linear part as it plays no essential role as complex conics are not divided into parabolas, hyperbolas

and ellipses as real conics are.

In[502]:= conic2 = -1 + (4 + ⅈ) x^2 - (6 - 5 ⅈ) x y - (3 - 2 ⅈ) y^2

Out[502]= -1 + (4 + ⅈ) x2 - (6 - 5 ⅈ) x y - (3 - 2 ⅈ) y2
In[503]:= sol1 = NSolveValues [conic2 ⩵ 0, {x, y}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
92291 x

87992

-
121001 y

175984

== 1.

Out[503]= {{1.5718 - 0.128716 ⅈ, -3.85212 + 0.19635 ⅈ}, {-0.822423 + 0.108657 ⅈ, -0.199829 - 0.165752 ⅈ}}
Mathematica Note: This is the same pseudo-random value I got earlier using Mathematica 12.3

instead of 13.1. In some ways this is comforting, but as we saw earlier in this chapter maybe not a good

thing. So our random point is still

In[504]:= p2 = sol1〚1〛
Out[504]= {1.5718 - 0.128716 ⅈ, -3.85212 + 0.19635 ⅈ}

Our algorithm normalForm4Conic works here.

In[505]:= K = normalForm4Conic [conic2, p2, x, y]

» Normal Form is (- 7.58234 - 11.9463 ⅈ) x2 + (7.58234 + 11.9463 ⅈ) y
Out[505]= {{0.587288 - 0.87296 ⅈ, 0.278298 - 0.388537 ⅈ, 0.185011 - 0.103622 ⅈ},

{1.39576 - 5.06059 ⅈ, -0.826902 + 0.0268567 ⅈ, 1.11321 - 1.83181 ⅈ},
{0.214735 - 0.099931 ⅈ, 0.0834036 - 0.0438464 ⅈ, -0.0119869 - 0.000566177 ⅈ}}

We can use this to find many points on conic 2 simply by applying our transformation function to easily

found points on the parabola y = x2

In[506]:= q1 = fltMD [{3, 9}, Inverse [K]]

Out[506]= {-0.260772 - 0.278993 ⅈ, 0.211966 - 0.318517 ⅈ}
In[507]:= conic2 /. Thread [{x, y} → q1]

Out[507]= 0. - 4.66294 × 10-15 ⅈ
We can use complex numbers as well

In[508]:= q2 = fltMD [{.357 - .218 ⅈ, (.357 - .218 ⅈ)^2}, Inverse [K]]

Out[508]= {-0.364464 - 0.0644493 ⅈ, 0.346904 - 0.0957222 ⅈ}

SurfaceStoryPartIII.nb | 246

In[509]:= conic2 /. Thread [{x, y} → q2]

Out[509]= -3.33067 × 10-15
- 3.27516 × 10-15 ⅈ

5.5 Normal Form for Smooth Cubics

In[]:= Clear [g1, g2, g3]

In section 7.5 of the Plane Curve Book I gave an algorithm for Weierstrass Normal form for a smooth

plane cubic. Unfortunately I was thinking only of numerical cubics and did not worry about form of the

coefficients. However in this Chapter we need the correct form y ^ 2 = 4 x3 - g2 x - g3 with coefficient

of x3 being 4.

Here is a correct function, it takes a smooth cubic f and inflection point ipf on f and it returns as a first

component the normal form and the second component gives a transformation matrix taking a point

on f to a point on the normal form. Note this differs from weierstrassNormalForm2D in my Plane Curve

Book and earlier versions of GlobalFunctions.nb

In[]:= weierstrassNormalForm [f_, ip_, x_, y_] :=

Module [{B1, B2, B3, B4, B5, B, f1, f2, f3, f4, k, cy2},

B1 = cTransform2D [f, ip, x, y];

f1 = Chop [FLT2D [f, B1, x, y], 1.*^-9];

cy2 = Coefficient [f1, y^2];

If[Length [cy2] > 0, Print ["Sorry, this example requires special handling "];

Abort []];

k = Expand [Coefficient [f1, y] / cy2 / 2 + y];

B2 = {{1, 0, 0}, {Coefficient [k, x], 1, k〚1〛}, {0, 0, 1}};

f2 = FLT2D [f1, B2, x, y];

B3 = homothety2D [CubeRoot [- (Coefficient [f2, x^3] / Coefficient [f2, y^2])], 1];

f3 = FLT2D [f2, B3, x, y];

f3 = -Expand [f3 / Coefficient [f3, y^2]];

B4 = {{1, 0, Coefficient [f3, x^2] / 3}, {0, 1, 0}, {0, 0, 1}};

B5 = {{1, 0, 0}, {0, 2, 0}, {0, 0, 1}};

f4 = FLT2D [f3, B5.B4, x, y];

B = B5.B4.B3.B2.B1;

{Expand [4 f4], B}];

For example, let

In[]:= f = y^2 - x^3 - x^2 + 2 x + 1 - 2 x y;

We find inflection points by allInflectionPoints2D in Section 70.1 of our GlobalFunctionsNS.nb.

In[]:= aip = allInflectionPoints2D [f, x, y]

Out[]= {{0., 1., 0.}, {1.73471, 4.33647 }, {1.73471, -0.867047 }}

247 | SurfaceStoryPartIII.nb

In[]:= ip = aip〚3〛
Out[]= {1.73471, -0.867047 }

In[]:= {wfn, Afn} = weierstrassNormalForm [f, ip, x, y]

Out[]= 0.193765 - 1.86508 x + 4. x3 - 1. y2, {{0.152783 , -0.316429 , -0.539393 },

{1.54482, -0.419326 , 1.32055 }, {-0.593323 , -0.352319 , 0.723767 }}
In[]:= ip2 = aip〚2〛

Out[]= {1.73471, 4.33647 }

Note that the transformation function takes ip to a point on wfn

In[]:= iq = fltMD [ip2, Afn]

wfn /. Thread [{x, y} → iq]

Out[]= {0.898131 , -1.19019 }

Out[]= -8.48255 × 10-12

Caution : remember the inflection point ip goes to an infinite point under this transformation.

In[]:= Show [ContourPlot [{f ⩵ 0, wfn ⩵ 0}, {x, -5, 5}, {y, -5, 5}],

Graphics [{PointSize [.02], {Red, Point [ip2]}, {Green, Point [iq]}}]]

Out[]=

-4 -2 0 2 4

-4

-2

0

2

4

5.6 Topology of the Complex Solution Set for smooth plane Conics

In these last two subsections we will explore complex curves. I briefly mention at the end of Chapter 5

of my Plane Curve Book that complex solutions of curves form compact orientable surfaces. However

the final pictures there are wrong and I can finally correct them. In these last sections we will show, in

the case of smooth conic and cubic how to explicitly give invertible continuous maps from the complex

solution set to a sphere or torus. In these sections we will think of the complex solution space is up

while the surface is down.

5.6.1 The Parabola

SurfaceStoryPartIII.nb | 248

My viewpoint in this note is that the complex solution space is up and we will map down to our target.

So for each case we will define a down mapping and an inverse up mapping.

We first do the simple case of the parabola y = x2. From our earlier results in this book we will see that

using our projective linear transformations we will able to then get the general case.

 This is quite simple for the affine part since every complex value for x gives a unique solution . So it is

immediate that the affine complex solution space is simply the complex plane. But to get the correct

infinite part we will instead use the equivalent affine space the paraboloid z = x2 + y2.

We need the Mathematica built in functions ReIm and Abs. The first changes a specific complex

number α + β ⅈ to the real ordered pair {α, β}. It may do some expansion:

In[]:= ReIm [(2 + 3 I)^2]

Out[]= {-5, 12}

The second is just the absolute value α2 + β2 .

In[]:= Abs[4 - 5 I]

Out[]= 41

So our up and down functions are defined simply by

In[]:= Pdown [{u_, v_}] := Append [ReIm [u], Abs[v]]

Pup[{x_, y_, z_}] := {x + I y, (x + I y)^2}

where u, v are any complex numbers and x, y, z are real numbers satisfying z = x2 + y2. To illustrate

that these are inverse functions between the correct domains

In[]:= pu1 = RandomComplex [{-10 - I, 10 + I}];

pu = pu1, pu12
pd = Pdown [pu]

(x^2 + y^2 - z) /. Thread [{x, y, z} → pd]

Pup[pd]

Out[]= {8.83185 - 0.426785 ⅈ, 77.8195 - 7.53861 ⅈ}
Out[]= {8.83185, -0.426785 , 78.1838 }

Out[]= 0.

Out[]= {8.83185 - 0.426785 ⅈ, 77.8195 - 7.53861 ⅈ}

249 | SurfaceStoryPartIII.nb

In[]:= qd1 = RandomReal [{-10, 10}, 2];

qd = Append [qd1, qd1〚1〛^2 + qd1〚2〛^2]
qu = Pup[qd]

(y - x^2) /. Thread [{x, y} → qu]

Pdown [qu]

Out[]= {-9.64215, 8.32047, 162.201 }

Out[]= {-9.64215 + 8.32047 ⅈ, 23.7408 - 160.454 ⅈ}
Out[]= 0. + 0. ⅈ
Out[]= {-9.64215, 8.32047, 162.201 }

The observant reader may have noticed that the third coordinate z is not used in the definition of Pup.

But this is because z is assumed be already a function of x and y. The function Pup will still give a

result even if {x, y, z} is not in the domain of Pup and this result is in the domain of Pdown this will

come in handy later to refine points in the domain of Pdown.

In[]:= Pdown [Pup[{2, 3, 11}]]

Out[]= {2, 3, 13}

We still must consider the infinite points. As mentioned in my Plane Curve book and Section 1.10 of this

book, it is enough to find zeros of the top form where the equation is of the form f = 0. The top form

for x ^ 2 - y = 0 is x2. So the only infinite complex solution of x ^ 2 - y = 0 is {0, 1, 0} in homogeneous

coordinates. But the top form for the paraboloid is x2 + y2 and the only real infinite solution is

{0, 0, 1, 0}. So these two will map to each other. One just needs to check continuity in the homoge -

neous space. By example

In[]:= Pdown [{100 + 100 I, (100 + 100 I)^2}]

Out[]= {100, 100, 20 000 }

But by homogeneity this is {100,100,20000}/20000 which is essentially the homogeneous point {0,0,1,0}

In[]:= Pup[{100, 100, 10 000 }]

Out[]= {100 + 100 ⅈ, 20 000 ⅈ}
which is close to the homogeneous point {0,1,0}. A complete proof of continuity is le� to the reader.

So now we can conclude that the complex projective solution space of the parabola y = x2 is topologi -

cally the real projective space of the paraboloid. Here is an illustration where the points on the

parabola are the points Pdown of the correspondingly named points of the solution set on the right.

SurfaceStoryPartIII.nb | 250

Out[]=

a = {0, 0}

b = {1, 1}

c = {2, 4}

d ={2.2 + 1.2 ⅈ, 3.4 + 5.28 ⅈ}
e = {3.07281 - 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
f = {-3.07281 + 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
g = {1 + 2 ⅈ, -3 + 4 ⅈ}
h = {-1. + 2.5 ⅈ, -5.25 - 5. ⅈ}
k = {2.5 + 1.7 ⅈ, 3.36 + 8.5 ⅈ}

From our observation in Section 1 that the projective paraboloid is algebraically equivalent, hence

topologically equivalent, to the sphere we can conclude that the complex solution space of the

parabola is topologically equivalent to the sphere. But we can do better since we know the algebraic

equivalence and describe the maps. Recall the global function defined in Section 2.1

In[]:= PB2SP = paraboloid2sphere

Out[]= 0, 0,
1

2
, -

1

2
, {1, 0, 0, 0}, {0, 1, 0, 0}, 0, 0,

1

2
,
1

2


In[]:= PSdown [{u_, v_}] := TransformationFunction [PB2SP][Pdown [{u, v}]]

PSup [{x_, y_, z_}] := Pup[TransformationFunction [Inverse [PB2SP]][{x, y, z}]]

Illustrating with simple examples

In[]:= PSdown [{3 I, 9}]

Out[]=  4
5
, 0,

3

5


In[]:= PSup [{4 / 5, 0, 3 / 5}]

Out[]= {3 ⅈ, -9}

In[]:= PSup [{2 / 3, 1 / 3, 2 / 3}]

Out[]= {1 + 2 ⅈ, -3 + 4 ⅈ}
In[]:= PSdown [{1 + 2 ⅈ, -3 + 4 ⅈ}]

Out[]=  2
3
,
1

3
,
2

3


In[]:= Note that

In[]:= PSdown [{0, 0}]

Out[]= {-1, 0, 0}

251 | SurfaceStoryPartIII.nb

In[]:= N[PSdown [{200, 40 000 }]]

Out[]= {0.99995, 0.00999975 , 0.}

suggests that the infinite point of the parabola goes to {1, 0, 0} of the sphere. In fact, note that all real

points on the parabola go to the equator of the sphere with solution {0,0} at {-1, 0, 0} in back of this

sphere.

Illustrating by graphic

Out[]=  ,

a = {0, 0}

b = {8, 64}

c = {3, 9}

d ={-3, 9}

e = {-7, 49}

i infinite point

f = {ⅈ, -1}

g = {- ⅈ, 1}

h = {0.2 + 6. ⅈ, -35.96 + 2.4 ⅈ}
k = {-0.2 - 6. ⅈ, -35.96 + 2.4 ⅈ}



5.6.2 The Circle

Now it is easy to write down the mapping from the complex solution set of x ^ 2 + y ^ 2 = 1 using the

global transformation P2C in Section 1.

In[]:= P2C = p2cTransform2D

Out[]= {{1, 0, 0}, {0, -0.5, 0.5}, {0, -0.5, -0.5}}

In[]:= Cdown [{u_, v_}] := PSdown [TransformationFunction [Inverse [P2C]][{u, v}]]

Cup[{x_, y_, z_}] := TransformationFunction [P2C][PSup [{x, y, z}]]

The specified domain for Cdown is the complex solution set of the circle while the domain for Cup is

the real Sphere. If these functions are called with other arguments one may still get a result but it may

not be in the other domain and these functions may not be invertible for these values.

We check, using first the fact that the complex trigonometric functions sin and cosine also satisfy

sin [θ]2 + cos [θ]2 = 1 for any complex θ .

SurfaceStoryPartIII.nb | 252

In[]:= θ = RandomComplex [{-8 - I, 8 + 8 I}]

(x^2 + y^2 - 1) /. Thread [{x, y} → {Cos[θ], Sin[θ]}]
p = {Cos[θ], Sin[θ]}
q = Cdown [p]

(x^2 + y^2 + z^2 - 1) /. Thread [{x, y, z} → q]

p - Cup[q]

Out[]= 3.5443 + 1.81567 ⅈ
Out[]= 1.77636 × 10-15

+ 8.88178 × 10-16 ⅈ
Out[]= {-2.90166 + 1.17228 ⅈ, -1.23606 - 2.75195 ⅈ}
Out[]= {-0.124258 , 0.291698 , -0.948405 }

Out[]= 0.

Out[]= -8.88178 × 10-16
+ 0. ⅈ, 0. - 8.88178 × 10-16 ⅈ

Next we check using the traditional trigonometric parameterizations of the real sphere

In[]:= {s, t} = RandomReal [{-Pi, Pi}, 2];

pd = {Sin[s] Cos[t], Sin[s] Sin[t], Cos[s]}

qu = Cup[pd]

(x^2 + y^2 - 1) /. Thread [{x, y} → qu]

Cdown [qu]

Out[]= {-0.322523 , 0.706684 , -0.629743 }

Out[]= {-1.17112 + 0.33659 ⅈ, -0.534488 - 0.737508 ⅈ}
Out[]= 5.55112 × 10-17

+ 1.11022 × 10-16 ⅈ
Out[]= {-0.322523 , 0.706684 , -0.629743 }

We see that these functions on the specified domains give results in the required range and are

inverses.

If we take a real solution of the circle and apply Cdown we get a point on the equator of the sphere, that

is z = 0.

In[]:= t0 = RandomReal [{-Pi, Pi}];

Cdown [{Cos[t0], Sin[t0]}]

Out[]= {0.74778, -0.663946 , 0.}

Some other values are

253 | SurfaceStoryPartIII.nb

In[]:= Cdown [{1, 0}]

Cdown [{-1, 0}]

Cdown [{0, -1}]

Out[]= {0., -1., 0.}

Out[]= {0., 1., 0.}

Out[]= {-1., 0., 0.}

But note that Cdown will not work correctly on the point {0,1} due to a zero denominator in the calcula -

tion. There is also a problem with Cup at {1, 0, 0}. A work around is

In[]:= Limit [Cdown [{Cos[t], Sin[t]}], t → Pi / 2]

Limit [Cup[{Cos[t], Sin[t], 0}], t → 0]

Out[]= {1., 0., 0.}

Out[]= {0., 1.}

While the real solution set of x2 + y2 = 1 is bounded the complex solution set is not. To find infinite

points we take the maximal form which here is already homogeneous and solve. But note that

x2 + y2 = (x + ⅈ y) (x - ⅈy) which has two complex solutions x = -ⅈ y or x = ⅈ y. Normalizing at y = 1 we get

solutions {-ⅈ , 1} or {ⅈ, 1}. So, in homogeneous coordinates there are two infinite points {ⅈ,1,0} or

{-ⅈ, 1, 0}. Unfortunately our formula only works for affine points but note

In[]:= (x^2 + y^2 - 1) /. Thread [{x, y} → {t ⅈ, Sqrt [1 - (t ⅈ)^2]}]
Out[]= 0

so these points are in our complex solution set for all t. Then our points map to sphere points by

continuity

In[]:= Limit [Cdown [{t ⅈ, Sqrt [1 - (t ⅈ)^2]}], t → ∞]

Limit [Cdown [{t ⅈ, Sqrt [1 - (t ⅈ)^2]}], t → -∞]

Out[]= {0., 0., 1.}

Out[]= {0., 0., -1.}

Here is an illustration of selected points on the complex circle and their images in the sphere.

SurfaceStoryPartIII.nb | 254

In[]:=

The three curves in the sphere, x = 0, y = 0, z = 0 separate the sphere into 8 connected regions. In this

example, since there is a strong relationship between the sphere and the circle which is embedded as

the equator we can identify the regions with certain sets of solutions. For example the region contain -

ing the solution f will contain all solutions of the form {α + β ⅈ , γ - δ ⅈ } for α ,β , γ, δ positive real numbers.

It should be noted that rotations and reflections of the sphere take each of these regions to another.

For example we can map the point f to the point g by

In[]:= Cup[TransformationFunction [{{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}][

Cdown [{0.866025 + .5 I, 0.866025 - .5 I}]]]

Out[]= {0.866025 - 0.499999 ⅈ, -0.866025 - 0.499999 ⅈ}

5.6.3 The Hyperbola

The first example were standard real conics we now look at one representative of an arbitrary real

conic. So that my work can be replicated we use integer coefficients.

In[]:= h1 = 1 + 10 x - 2 x2 - 2 y + 8 x y + y2;

This gives a hyperbola which contains, among many other points, the point ph:

In[]:= ph = {1.0259094757506706` , -3.795341582563674` };

In[]:= Show [ContourPlot [h1 ⩵ 0, {x, -5, 5}, {y, -5, 5}, ContourStyle → Blue, ImageSize → Tiny],

Graphics [{Red, PointSize [.07], Point [ph]}]]

Out[]=

-4 -2 0 2 4

-4

-2

0

2

4

In Section 7.3 of my Plane Curve Book I show how to transform any plane conic to a parabola. In this

case I know the transform so will not go through the steps. The transform from this hyperbola to the

parabola is

255 | SurfaceStoryPartIII.nb

In[]:= H2P = {{1.`, 1.`, 2.`}, {3.`, 0.`, -3.`}, {1.`, -2.`, -1.`}};

To check a pseudo -random point

In[]:= q = TransformationFunction [H2P][ph]

Out[]= {-0.101021 , 0.0102051 }

In[]:= (y - x^2) /. Thread [{x, y} → q]

Out[]= 1.04083 × 10-17

Conversely

In[]:= rr = RandomReal [{-5, 5}]

Out[]= 1.52491

In[]:= rh = TransformationFunction [Inverse [H2P]][{rr, rr^2}]

Out[]= {3.69689, -0.39122 }

In[]:= h1 /. Thread [{x, y} → rh]

Out[]= -1.42109 × 10-14

Now we can write down the maps from the complex solution space of h1 = 0 to and from the real

sphere.

In[]:= Hdown [{x_, y_}] := PSdown [TransformationFunction [H2P][{x, y}]]

Hup[{x_, y_, z_}] := TransformationFunction [Inverse [H2P]][PSup [{x, y, z}]]

For the curious these functions are not terribly complicated

In[]:= Hdown [{x, y}]

Out[]=  -
1

2
+

1

2
Abs -3.+3. x

-1.+1. x-2. y


1

2
+

1

2
Abs -3.+3. x

-1.+1. x-2. y
 ,

Re 2. +1. x+1. y

-1.+1. x-2. y


1

2
+

1

2
Abs -3.+3. x

-1.+1. x-2. y
 ,

Im 2. +1. x+1. y

-1.+1. x-2. y


1

2
+

1

2
Abs -3.+3. x

-1.+1. x-2. y
 

In[]:= Hup[{x, y, z}]

Out[]=  0.166667 + 0.333333  y

1-x
+

ⅈ z
1-x

 + 0.166667  y

1-x
+

ⅈ z
1-x

2
0.166667 + 0.333333  y

1-x
+

ⅈ z
1-x

 - 0.166667  y

1-x
+

ⅈ z
1-x

2 ,

-0.5 - 9.25186 × 10-18  y

1-x
+

ⅈ z
1-x

 + 0.166667  y

1-x
+

ⅈ z
1-x

2
0.166667 + 0.333333  y

1-x
+

ⅈ z
1-x

 - 0.166667  y

1-x
+

ⅈ z
1-x

2 

which would look worse if our coefficients were not rational numbers. Note the built in function Abs is

given by

Abs [u + I v] = Sqrt [u ^ 2 + v ^ 2] so square roots are involved.

Once again we see that real solutions of h1 = 0 go to the equator. Recall our random point on h1 was rh

SurfaceStoryPartIII.nb | 256

In[]:= Hdown [rh]

Out[]= {0.39856, 0.917142 , 0.}

To find in the infinite points we use the method given in Section 3.3 of my Plane Curve book.

In[]:= maxFormh1 = -2 x^2 + 8 x y + y^2

Out[]= -2 x2 + 8 x y + y2

In[]:= Reduce [maxFormh1 ⩵ 0, {x, y}]

Out[]= y ⩵ -4 x - 3 2 x || y ⩵ -4 x + 3 2 x

We can write down our infinite points

In[]:= N[{1, -4 - 3 Sqrt [2], 0}]

N[{1, -4 + 3 Sqrt [2], 0}]

Out[]= {1., -8.24264, 0.}

Out[]= {1., 0.242641 , 0.}

As an illustration

In[]:= sol4 = NSolveValues [h1 ⩵ 0 && x ⩵ 100, {x, y}]

Out[]= {{100., -821.137 }, {100., 23.1374 }}

Writing these as homogeneous points and dividing by 100 we see this is an approximation of the infi -

nite point.

In[]:= Evaluate [{{100.`, -821.1374183841087` , 1}, {100.`, 23.137418384108656` , 1}} / 100]

Out[]= 1., -8.21137,
1

100
, 1., 0.231374 ,

1

100


The coordinates on the sphere will be approximately

In[]:= ihd = Hdown [sol4〚1〛]
hhd = Hdown [sol4〚2〛]

Out[]= {-0.708577 , -0.705633 , 0.}

Out[]= {0.698477 , 0.715633 , 0.}

To find Hup[{1, 0, 0}] we need to take a limit

In[]:= Clear [t]

In[]:= Limit [Hup[{t, Sqrt [1 - t^2], 0}], t → 1]

Out[]= {-1., -1.}

Here is the graphic showing this data and other selected points. The arrows on the plane graph show

the direction of travel on the real plane curve which then is also on the spheres with infinite point h

between a,b and infinite point i between c and d.

257 | SurfaceStoryPartIII.nb

Out[]=

b

c

d

a

h

h

i

i
-4 -2 0 2 4

-4

-2

0

2

4

a = {3.30081, -0.511291 }

b = {-2.61344, -1.584 }

c = {-0.212143 , 4}

d = {1., -3.}

e = {-0.3235 + 0.7941 ⅈ, -0.8824 + 0.5294 ⅈ}
f = {1.324 + 0.7941 ⅈ, -1.118 + 0.5294 ⅈ}
g = {-0.2 - 0.0707107 ⅈ, -0.3 - 0.141421 ⅈ}
h infinite point

i infinite point

j = {0.5 + 0.5 ⅈ, -1 + ⅈ}
k = {0.5 - 0.5 ⅈ, -1 - ⅈ}
l = {-0.3235 - 0.7941 ⅈ, -0.8824 - 0.5294 ⅈ}
m = {0.1471 - 0.08824 ⅈ, 0.05882 - 1.235 ⅈ}
n = {0.6803 - 0.1949 ⅈ, -2.014 + 2.944 ⅈ}
o = {0.5 + 0.133975 ⅈ, -1. - 2.73205 ⅈ}

5.6.4 A complex conic

As our last example we consider the complex conic of section 5.4.6 where we called it conic2. Here we

will call it just k. The linear terms just shear the conic so we can leave them off with out destroying our

pseudo-randomness.

In[]:= k = -1 + (4 + ⅈ) x2 - (6 - 5 ⅈ) x y - (3 - 2 ⅈ) y2;

In 5.4 .6 we calculated a transformation matrix K taking this to normal form y = x2 for reference we

repeat this here

In[]:= K :=

-0.5123539884590109` + 0.9071396873769841` ⅈ -0.40717365502919217` + 0.4894286738610242`

3.855326236452737` - 2.611164128247496` ⅈ -3.4893438886784645` + 7.309745651560146`

0.8220704880423995` - 0.4308659945517181` ⅈ 0.3183638426493982` - 0.18704995801039564`

SurfaceStoryPartIII.nb | 258

In[]:= K // MatrixForm

Out[]//MatrixForm=

-0.512354 + 0.90714 ⅈ -0.407174 + 0.489429 ⅈ -0.783827 + 0.473494 ⅈ
3.85533 - 2.61116 ⅈ -3.48934 + 7.30975 ⅈ 1.13508 - 1.87453 ⅈ
0.82207 - 0.430866 ⅈ 0.318364 - 0.18705 ⅈ -0.0470254 + 0. ⅈ

Note

In[]:= Chop [Expand [FLT3D [{k}, K, {x, y}] / (0.5004363187858398` + 0.9368983792763038` ⅈ)]]
Out[]= -1. x2 + 1. y

Our topological equivalences are from the complex solution space of k to the sphere are

In[]:= Kdown [{u_, v_}] := PSdown [TransformationFunction [K][{u, v}]]

Kup[{x_, y_, z_}] := TransformationFunction [Inverse [K]][PSup [{x, y, z}]]

We can find a solution point of k = 0 by

In[]:= pk1 = fltMD [{2, 4}, Inverse [K]]

Out[]= {-0.396008 - 0.0322832 ⅈ, 0.199918 + 0.0146187 ⅈ}
Check

In[]:= k /. Thread [{x, y} → pk1]

Out[]= -1.11022 × 10-16
+ 7.21645 × 10-16 ⅈ

In[]:= So

In[]:= ps1 = Kdown [pk1]

(x^2 + y^2 + z^2 - 1) /. Thread [{x, y, z} → ps1]

Out[]= 0.6, 0.8, -1.77636 × 10-16 
Out[]= -4.44089 × 10-16

On the other hand if we take a point on the sphere

In[]:= ps1 = {1 / 3, 2 / 3, -2 / 3}

Out[]=  1
3
,
2

3
, -

2

3


In[]:= pk2 = Kup[ps1]

Out[]= {-0.397892 - 0.138114 ⅈ, 0.206391 - 0.191069 ⅈ}
In[]:= k /. Thread [{x, y} → pk2]

Out[]= -3.33067 × 10-16
+ 5.55112 × 10-16 ⅈ

we get a solution point for k = 0.

We want to find the infinite points of k and their image in the sphere. We notice k is almost homoge -

neous, in fact kMax is just k + 1, so we solve

259 | SurfaceStoryPartIII.nb

In[]:= pinfs1 = NSolveValues [{k + 1, RandomReal [{-10, 10}, 2].{x, y} + 1}, {x, y}]

Out[]= {{-0.185944 - 0.0966776 ⅈ, -0.028371 - 0.092407 ⅈ},
{-0.0434693 + 0.0012407 ⅈ, 0.10781 + 0.00118589 ⅈ}}

The following are then good estimates of the infinite points of k

In[]:= pinf1a = 2000 pinfs1 〚1〛
pinf1b = 2000 pinfs1 〚2〛

Out[]= {-371.889 - 193.355 ⅈ, -56.7419 - 184.814 ⅈ}
Out[]= {-86.9385 + 2.4814 ⅈ, 215.621 + 2.37179 ⅈ}

These go to

In[]:= Kdown [pinf1a]

Kdown [pinf1b]

Out[]= {0.147137 , -0.875366 , 0.460531 }

Out[]= {0.998712 , 0.0435125 , -0.0261242 }

We can check for more infinite points or consistency of our estimates by trying again

In[]:= pinfs2 = NSolveValues [{k + 1, RandomReal [{-10, 10}, 2].{x, y} + 1}, {x, y}]

Out[]= {{0.735128 + 0.922918 ⅈ, -0.0655977 + 0.540252 ⅈ},
{0.161756 - 0.00517528 ⅈ, -0.401234 - 0.00302947 ⅈ}}

In[]:= pinf2a = 2000 pinfs2 〚1〛
pinf2b = 2000 pinfs2 〚2〛

Out[]= {1470.26 + 1845.84 ⅈ, -131.195 + 1080.5 ⅈ}
Out[]= {323.512 - 10.3506 ⅈ, -802.469 - 6.05894 ⅈ}

These go to

In[]:= Kdown [pinf2a]

Kdown [pinf2b]

Out[]= {0.149228 , -0.874863 , 0.460809 }

Out[]= {0.99877, 0.0424832 , -0.0255804 }

These are close enough for plotting purposes, but we can get perhaps slightly better taking the average

In[]:= ik = Kdown [(pinf1a + pinf2a) / 2]

jk = Kdown [(pinf1b + pinf2b) / 2]

Out[]= {0.149565 , -0.874677 , 0.461054 }

Out[]= {0.998791 , 0.0421058 , -0.0253805 }

We now would like to know any real points in the complex projective solution set of k. An interesting

way to solve this is to note Mathematica has some very good very general minimization routines,

SurfaceStoryPartIII.nb | 260

especially designed to work with Artificial Intelligence so�ware. We use our trigonometric parameteriza -

tion of the sphere and minimize the norm of the imaginary part of Kup of a point.

In[]:= Clear [t, s];

fff := Norm [Im[Kup[{Sin[s] Cos[t], Sin[s] Sin[t], Cos[s]}]]]

One run is

In[]:= Timing [Minimize [{fff, -Pi / 2 < s < Pi / 2, -Pi < t < Pi}, {t, s}]]

Out[]= 0.644184 , 1.6184 × 10-10, {t → -1.95586, s → -1.36176 }
Note this took my old Intel® Core™ i7-6800K CPU @ 3.40GHz × 12 computer running on Ubuntu 22.04

with Mathematica 12.3 less than .2 second to do this calculation. So one real point of k is

In[]:= gk = Chop [Kup[{Sin[s] Cos[t], Sin[s] Sin[t], Cos[s]} /.

{t → -1.9558593848524621` , s → -1.3617638790835194` }], 10^-9]

Out[]= {-0.43975, 0.0964036 }

Checking:

In[]:= k /. Thread [{x, y} → gk]

Out[]= 2.61101 × 10-11
+ 7.32226 × 10-10 ⅈ

Another, less interesting but more accurate way to find real values is just to find a common solution to

the real and imaginary parts .

In[]:= ComplexExpand [k]

Out[]= -1 + 4 x2 - 6 x y - 3 y2 + ⅈ x2 + 5 x y + 2 y2
In[]:= solre = NSolveValues -1 + 4 x2 - 6 x y - 3 y2 ⩵ 0 && x2 + 5 x y + 2 y2 ⩵ 0, {x, y}, Reals 

Out[]= {{0.43975, -0.0964036 }, {-0.43975, 0.0964036 }, {0.693569 , -1.58188 }, {-0.693569 , 1.58188 }}

In[]:= k /. Thread [{x, y} → solre〚1〛]
Out[]= 1.4988 × 10-15

- 4.996 × 10-16 ⅈ
Thus there are 4 real values in this solution set .

We can picture selected points of the solution set and their image on the sphere by

261 | SurfaceStoryPartIII.nb

Out[]=

a = {-0.2446 + 0.01095 ⅈ, 0.09187 + 0.337 ⅈ}
b = {-0.396 - 0.03228 ⅈ, 0.1999 + 0.01462 ⅈ}
c = {-0.3621 - 0.04404 ⅈ, 0.3133 + 0.1008 ⅈ}
d = {-0.1261 + 0.3381 ⅈ, -0.1843 + 0.2902 ⅈ}
e = {-0.3432 - 0.05874 ⅈ, 0.3981 - 0.167 ⅈ}
f = {-0.3607 + 0.02692 ⅈ, 0.1152 + 0.1399 ⅈ}
g = {0.43974998 , -0.096403558 }

h = {0.69356944 , -1.5818768 }

i infinite point

j infinite Point

m = {-0.04568 + 0.2439 ⅈ, -0.1703 + 0.3354 ⅈ}
n = {-0.6839 + 0.4244 ⅈ, -0.2995 + 0.01822 ⅈ}
p = {-0.1794 - 0.09911 ⅈ, 0.2826 - 0.3779 ⅈ}

5.7 The complex projective solution set of a smooth Cubic.

As mentioned in my Plane Curve Book in Section 5.5 the motivation for the concept of genus was the

observation by Able and Jacobi in the early 1800’s that certain functions involved in the indefinite

integration of

 dx

4 x3 - g2 x - g3

produced doubly periodic complex functions. It is not clear whether they realized that the image of

these functions was a torus although we now know this as the Corollary in Section 5.3. By midcentury,

however, Weierstrass must have realized this and came up with a parameterization of cubic functions

of our normal form y2 = 4 x3 - g2 x - g3 using doubly periodic functions. Since we have shown that

every smooth cubic has such a normal form we can use Weierstrass’s parameterization to illustrate

how to construct an explicit invertible map from the solution set of a cubic function to the torus.

Fortunately for us, Mathematica has a nice implementation of Weierstrass’s functions. The intention of

Mathematica is for finding closed forms for the integral above. However if you read the documentation

carefully our use is at least partially covered.

We will be using the built in WeierstrassP and related functions to get our parameterization. Here is a

general overview. We start with a smooth, meaning non-singular, cubic function f . We apply

our weierstrassNormalForm procedure of Section 5.4.6 to get a function in Weierstrass normal form

wfn = 4 x3 - g2 x - g3 - y2 and transformation matrix Af We can extract g2, g3 to get a vector wfv using

the function

In[]:= weierstrassVector [wfn_] := {-Coefficient [wfn, x], -wfn /. Thread [{x, y} → 0]}

 The Weierstrass parameterization of wfn is then given for complex t by

SurfaceStoryPartIII.nb | 262

In[]:= wPar [t_, wfv_] := {WeierstrassP [t, wfv], WeierstrassPPrime [t, wfv]}

If we want points on our original curve f they can be obtained from points {x, y} on wfn using

fltMD[{x,y}, Inverse[Af]].

Although Mathematica is necessarily thinking of our use of WeierstrassP they do give a built in inverse

function with optional input InverseWeierstrassP[{x,y}, wfv] which will return t so that

wPar[t,wfv]= {x,y} provided, of course, that {x , y} is on the curve wfn with a very tight tolerance, eg.

10-16.

wPar will be a doubly periodic function, the periods will depend on the vector wfv . To find these we

use the built in WeierstrassHalfPeriods [wfv] . This will return 2 complex numbers which we can

interpret as vectors using built in ReIm. These vectors may not be orthogonal, but they should be

independent. We can then use these vectors to form a lattice and hence tiling of the plane so that each

tile could be a complete domain for wpar. For example

where one tile, called the fundamental domain is shown . Now one can define a TransformationFunc
tion on the plane to transform this to a tiling where each tile is a square of side 2π . Thus on one hand

we can parameterize our curves wfn, including all complex values, hence f on this fundamental domain

but because wpar is periodic over the entire region we can also parameterize our torus or even saddle

surface from this same region.

In[]:=

Overall our goal is the map defined by the composition of the top arrows in the graphic below. This

takes the solution set of our cubic curve to the torus. The inverse mapping is the composition of the

lower arrows.

263 | SurfaceStoryPartIII.nb

In[]:=

The orange maps come from the Weierstrass normal form projective linear transformation, the cyan

map is the Inverse Weierstrass map with inverse wPar, the magenta map is the linear transformation

shown above and the Gray maps are the Tpar transformation. The last maps could be replaced by the

SSpar maps to the saddle surface. It should be noted that that the cyan maps between the Weierstrass

normal form and the Weierstrass fundamental domain are where the hardest non-linear work is being

done.

Unfortunately if the input is not accurate enough to give a point on the original curve or not accurate

enough in the transformation to normal form then InverseWeierstrassP will fail to evaluate and will

not give a warning message. For this reason, since we are using this inside a composition I recommend

the following version of the inverse to WeierstrassP for this use. This check to see if the original In
verseWeierstrassP works and if not finds a close point on the Weierstrass normal form of sufficient

accuracy. The end result may be slightly inaccurate but will still end up on the torus. We could use the

closest point algorithm if we are dealing only with real values, but this works for complex points as well.

In[]:= inverseWP [pe_, wfv_] := Module [{w, ue, le, gve, p1, f, s, t},

w = InverseWeierstrassP [pe, wfv];

If[NumberQ [w], Return [w]];

f = 4 s^3 - wfv〚1〛 s - wfv〚2〛 - t^2;
gve = gtVec2D [f, pe, t, s];

ue = pe + 10^-6 * gve;

le = line2D [ue, {gve〚2〛, -gve〚1〛}, s, t];

p1 = {s, t} /. FindRoot [{f, le}, {s, ue〚1〛}, {t, ue〚2〛}];
w = InverseWeierstrassP [p1, wfv];

If[NumberQ [w], Return [w], Echo [pe, "Fail at InverseWeierstrassP "]];

]

Here is an example, note that the actual normal cubic is not entered.

In[]:= fn = -y^2 + 4 x^3 - 3 x + 2;

wfvn = weierstrassVector [fn]

p = {-0.7054100411010285` + 0.8618642458406451` ⅈ, 3.`}

Out[]= {3, -2}

Out[]= {-0.70541 + 0.861864 ⅈ, 3.}

In[]:= q = inverseWP [p, wfvn]

Out[]= 0.432544 - 0.800578 ⅈ
We wrongly use the display value of p

SurfaceStoryPartIII.nb | 264

In[]:= pe = {-.70541` + .861864` I, 3.`};

In[]:= qe = inverseWP [pe, wfvn]

Out[]= 0.432545 - 0.800578 ⅈ
In[]:= Norm [q - qe]

Out[]= 5.43521 × 10-7

5.7.1 First Example

Isaac Newton first described a cubic plane curve with three asymptotes (infinite points) and two ovals.

A nice example is my Newton Hyperbola 836 described in my Plane Curve Book. My actual curve and

plot is

In[]:= nh836 = 1 + x + 0.2` x2 - 0.008` x3 - y + x y + 0.2` x2 y + 0.2` y2 - 0.2` x y2 - 0.008` y3;

In[]:= ContourPlot [nh836 ⩵ 0, {x, -20, 15}, {y, -15, 15}, ImageSize → Small]

Out[]=

-20 -15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

I will first show, without going too deeply into the subject, how we can use our Weierstrass parameteri -

zation to plot the small oval. Then I will show how to plot the complex curve, with the equation above,

on a torus.

The first step is to find the Weierstrass Normal Form . I first find inflection points

In[]:= infl836 = allInflectionPoints2D [nh836, x, y]

Out[]= {{-0.12874, 22.0683 }, {6.57711, 12.6084 }, {15.8884, -0.527148 }}

By trial I find that the following one is the easiest to work with

In[]:= infl836 = {15.888428098023551` , -0.5271483543763018` };

In[]:= {wfn836, A836} = weierstrassNormalForm [nh836, infl836, x, y]

Out[]= 3.71474 - 7.25646 x + 4. x3 - 1. y2, {{0.0847194 , 0.751728 , -0.949785 },

{1.73264, -0.689376 , 3.96493 }, {-0.025385 , 0.659709 , 0.751093 }}
I can find points on the small oval

265 | SurfaceStoryPartIII.nb

In[]:= sops = NSolveValues [nh836 ⩵ 0 && y ⩵ 3, {x, y}]

Out[]= {{-2.8511, 3.}, {0.177637 , 3.}, {102.673, 3.}}

The first two appear to be on this oval, the third is not .

In[]:= wsop = fltMD [sops〚2〛, A836]

Out[]= {0.484442 , 0.80881 }

In[]:= Show [ContourPlot [wfn836 ⩵ 0, {x, -2, 2}, {y, -3, 3}],

Graphics [{Green, PointSize [.04], Point [wsop]}], ImageSize → Small]

Out[]=

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

Now we find the Weierstrass vector from the normal form

In[]:= wfv836 = weierstrassVector [wfn836]

Out[]= {7.25646, -3.71474 }

The point wsop can be recovered by the Weierstrass parameter function

In[]:= inwsop = InverseWeierstrassP [wsop, wfv836]

Out[]= 1.11846 - 1.02932 ⅈ
In[]:= wPar [inwsop, wfv836]

Out[]= 0.484442 - 3.60822 × 10-16 ⅈ, 0.80881 + 1.9984 × 10-15 ⅈ
which agrees with wso p a�er a chop . Now I claim, from experience, that all points on the small oval

will have parameters with the same complex part

In[]:= cpsop = Im[inwsop] I

Out[]= 0. - 1.02932 ⅈ
We then guess by trial and error, our using the period information below, that some points on the

small oval in the normal form are given by

SurfaceStoryPartIII.nb | 266

In[]:= smOvalW836 = Re[Table [wPar [t + cpsop, wfv836], {t, -1.8, 1.8, .2}]]

Out[]= {{0.705235 , -0.0157043 }, {0.688668 , -0.154575 }, {0.639967 , -0.345346 },

{0.543429 , -0.642888 }, {0.371722 , -1.10581 }, {0.0884376 , -1.75379 },

{-0.333574 , -2.4468 }, {-0.863066 , -2.7214 }, {-1.349, -1.9194 },

{-1.55309, 0.}, {-1.349, 1.9194 }, {-0.863066 , 2.7214 }, {-0.333574 , 2.4468 },

{0.0884376 , 1.75379 }, {0.371722 , 1.10581 }, {0.543429 , 0.642888 },

{0.639967 , 0.345346 }, {0.688668 , 0.154575 }, {0.705235 , 0.0157043 }}

In[]:= So

In[]:= smOvalfh836 = fltMD [#, Inverse [A836]] & /@ smOvalW836

Out[]= {{-0.237931 , 5.24962 }, {-0.613045 , 5.14342 }, {-1.19061, 4.70561 }, {-1.98105, 3.9497 },

{-2.88308, 2.96237 }, {-3.66224, 1.9249 }, {-4.04775, 1.03715 }, {-3.88672, 0.413041 },

{-3.23152, 0.0607155 }, {-2.31345, -0.0630182 }, {-1.41128, 0.00475001 },

{-0.705143 , 0.261776 }, {-0.237742 , 0.738193 }, {0.0290328 , 1.46194 }, {0.152364 , 2.3981 },

{0.179131 , 3.4085 }, {0.13641, 4.29903 }, {0.027237 , 4.92339 }, {-0.171109 , 5.22568 }}

Checking

In[]:= Show [ContourPlot [nh836 ⩵ 0, {x, -15, 10},

{y, -10, 10}, ContourStyle → Directive [{Orange, Thickness [.01]}]],

Graphics [{Black, Dashed, Line [smOvalfh836]}]]

Out[]=

-15 -10 -5 0 5 10

-10

-5

0

5

10

To go farther we need the Weierstrass Half Periods

In[]:= WHalfPer = ReIm [WeierstrassHalfPeriods [wfv836]]

Out[]= {{0., -1.02932 }, {1.82442, 0.}}

These are easy to work with since they are orthogonal as real vectors and in the direction of the axes.

Thus the transformation that gives the desired lattice is given by transformation matrix

267 | SurfaceStoryPartIII.nb

In[]:= B836 = {{Pi / 1.8244232447332889` , 0, 0}, {0, Pi / -1.0293247723937833` , 0}, {0, 0, 1}};

B836 // MatrixForm

Out[]//MatrixForm=

1.72196 0 0

0 -3.05209 0

0 0 1

In[]:= fltMD [#, B836] & /@ WHalfPer

Out[]= {{0., 3.14159 }, {3.14159, 0.}}

with the fundamental domain

In[]:= Graphics [{{Green, Polygon [{{-Pi, Pi}, {Pi, Pi}, {Pi, -Pi}, {-Pi, -Pi}}]},

{Blue, PointSize [.02], Point [Flatten [Table [2 Pi {i, j}, {i, -1, 1}, {j, -1, 1}], 1]]},

{Black, Text [{0, 0}, {.7, .7}], Text ["{π,π ⅈ}", {π, π } + {.3, .3}],

Text ["{2π,2π ⅈ}", {2 π + 1.8, 2 π }]}}, ImageSize → Small]

Out[]=
{0, 0}

{π ,π ⅈ}
{2π ,2π ⅈ}

Note we can modify the routine reduce2pipi in Global Functions to transform any complex number

into a unique point of this domain.

In[]:= reduce2pipi [{12.35, -8.756 }]

Out[]= {-0.216371 , -2.47281 }

We can now define a period function of period 2 π from the fundamental square -π ≤ x, y ≤ π to the

plane

In[]:= WPpar [{x_, y_}] :=

fltMD [wPar [With [{z = fltMD [{x, y}, Inverse [B836]]}, z〚1〛 + z〚2〛 ⅈ], wfv836], Inverse [A836]]

Checking for periodicity

In[]:= r2 = RandomReal [{-5, 5}, 2]

Out[]= {1.33713, -2.96648 }

In[]:= cr2 = WPpar [r2]

Out[]= {0.0123326 - 0.0580076 ⅈ, 1.3548 - 0.234791 ⅈ}

SurfaceStoryPartIII.nb | 268

In[]:= WPpar [reduce2pipi [r2]]

Out[]= {0.0123326 - 0.0580076 ⅈ, 1.3548 - 0.234791 ⅈ}
Then we have a function from the standard torus to the complex projective solution set of fh836.

In[]:= Tor2nh836 [{x_, y_, z_}] := WPpar [InvTor [{x, y, z}]]

For example consider the exact standard torus point

In[]:= pt1 = 
7 π

6 2

, -
7 π

6 2

, -
2 π
3

;

In[]:= qc = Tor2nh836 [pt1]

Out[]= {0.4043 + 0.23137 ⅈ, 6.59127 - 6.71793 ⅈ}
In[]:= nh836 /. Thread [{x, y} → qc]

Out[]= 6.38156 × 10-12
- 5.61773 × 10-12 ⅈ

Our inverse function is then

In[]:= nh2Tor836 [{x_, y_}] := Module [{s, w, u, v},

{s, w} = fltMD [{x, y}, A836];

{u, v} = ReIm [inverseWP [{s, w}, wfv836]];

{s, w} = reduce2pipi [fltMD [{u, v}, B836]];

Tpar /. Thread [{r, t} → {s, w}]]

Checking we see for the example just above

In[]:= nh2Tor836 [qc]

Out[]= {2.59168, -2.59168, -1.48096 }

but

In[]:= N[pt1]

Out[]= {2.59168, -2.59168, -1.48096 }

So this inverse does work .

Earlier we saw a large number of points on the small oval of nh836 was given by the list smOvalfh836.

Applying this inverse function to random points in this set

In[]:= at = nh2Tor836 [smOvalfh836 〚2〛]
bt = nh2Tor836 [smOvalfh836 〚11〛]
ct = nh2Tor836 [smOvalfh836 〚13〛]

Out[]= -4.32594, -1.39133 × 10-15, 1.03185 
Out[]= -1.91519, -4.01803 × 10-15, -0.981497 
Out[]= -2.60398, 2.63169 × 10-15, -1.47593 

269 | SurfaceStoryPartIII.nb

we deduce that this small oval goes to the curve on the torus y = 0 and x < 0. On the other hand comput -

ing some points on the large oval of nh836 we get results such as

In[]:= dc = NSolveValues [{nh836, y - 9}, {x, y}]〚2〛
dt = nh2Tor836 [dc]

ec = NSolveValues [{nh836, x - 6}, {x, y}]〚2〛
et = nh2Tor836 [ec]

fc = NSolveValues [{nh836, y + 9}, {x, y}]〚2〛
ft = nh2Tor836 [fc]

Out[]= {2.68852, 9.}

Out[]= {4.01089, 0., 1.30833 }

Out[]= {6., -0.949031 }

Out[]= {1.83558, 0., -0.872775 }

Out[]= {-17.8383, -9.}

Out[]= {2.86122, 0., 1.54557 }

Similarly we can deduce that these go the curve y = 0 and x > 0. In particular the real solution set of

nh836 goes to the set y = 0 of the torus.

The infinite points of nh836 are real and given by

In[]:= rinf836 = infiniteRealPoints2D [nh836, x, y]

Out[]= {{5.37825, 4.96196, 0}, {-4.66193, -0.194615 , 0}, {-0.0830776 , 2.15705, 0}}

We can' t handle these directly with nh2Tor836 so we work manually

On wfn836 these points go to

In[]:= rinfwfn836 = fltiMD [#, A836] & /@ rinf836

Out[]= {{1.33433, 1.88016 }, {53.8773, 790.686 }, {1.13286, -1.14443 }}

Then on the Weierstrass Fundamental domain they go to

In[]:= rinfW = inverseWP [#, wfv836] & /@ rinfwfn836

Out[]= {2.68921 + 0. ⅈ, 3.5126 + 0. ⅈ, 1.09589 }

In the pipi square

In[]:= rinfpipi = (reduce2pipi [fltMD [ReIm [#], B836]]) & /@ rinfW

Out[]= {{-1.65247, 0.}, {-0.234611 , 0.}, {1.88708, 0.}}

so they end up in the torus by

In[]:= {it, jt, kt} = Tpar /. Thread [{r, t} → #] & /@ rinfpipi

Out[]= {{3.22326, 0., 1.56867 }, {1.80541, 0., 0.825839 }, {3.45787, 0., -1.53863 }}

The raw data is hidden in the print version . Here ares selected points of the complex projective solu -

SurfaceStoryPartIII.nb | 270

tion set of nh836 with their value in the solution space and their image value on the torus, only top

half is shown.

271 | SurfaceStoryPartIII.nb

1 + x + 0.2 x2 - 0.008 x3 - y + x y + 0.2 x2 y + 0.2 y2 - 0.2 x y2 - 0.008 y3 = 0

Out[]=
i

i

j

j

k

k

a

b
c

d

e

f

g

-20 -10 0 10

-15

-10

-5

0

5

10

15

Out[]=

Selected Points

point solution nh836 torus

a {-3.25717 , 2.50039 } {-3.14159 , 0, 1.5708 }

b {-2.95346 , -0.00125406 } {-1.80541 , 0., 0.825839 }

c {-0.237742 , 0.738193 } {-2.60398 , 0, -1.47593 }

d {2.68852 , 9. } {4.01089 , 0., 1.30833 }

e {8., 13.9397 } {1.83558 , 0., -0.872775 }

f {-17.8383 , -9. } {2.86122 , 0., 1.54557 }

g {-0.816527 , 5.00896 } {-4.18879 , 0., 1.1708 }

h {-26.1733 , -2.68129 } {2.0208 , 0., 1.10055 }

i infinite point {3.22326 , 0., 1.56867 }

j infinite point {1.80541 , 0., 0.825839 }

k infinite point {3.45787 , 0., -1.53863 }

m {0.498908 - 0.491756 ⅈ, 6.95827 + 0.239189 ⅈ} {2.35619 , 4.08105 , 0. }

n {-3.46778 - 1.14937 ⅈ, 2.45776 - 1.43264 ⅈ} {-4.08105 , 2.35619 , 0. }

p {-0.15189 - 0.228384 ⅈ, 5.36036 + 0.0838272 ⅈ} {-2.22144 , 2.22144 , 1.5708 }

q {-4.1648 - 3.14172 ⅈ, 2.24528 - 3.50171 ⅈ} {0., 3.14159 , 1.5708 }

r {-6.08816 - 8.56169 ⅈ, 1.02551 - 8.39626 ⅈ} {2.22144 , 2.22144 , 1.5708 }

s {-6.08816 + 8.56169 ⅈ, 1.02551 + 8.39626 ⅈ} {2.22144 , -2.22144 , 1.5708 }

t {-4.1648 + 3.14172 ⅈ, 2.24528 + 3.50171 ⅈ} {0., -3.14159 , 1.5708 }

u {-3.46778 + 1.14937 ⅈ, 2.45776 + 1.43264 ⅈ} {-2.22144 , -2.22144 , 1.5708 }

Out[]=

SurfaceStoryPartIII.nb | 272

Note that the real part of our curve on the torus consists of the magenta and blue circles.

5.7.2 Second Example (Weierstrass Example 8)

For our second example we will use the pseudo random cubic

In[]:= f8 = 0.8054578518310507` - 0.9960158007224074` x + 4 x3 - y2

Out[]= 0.805458 - 0.996016 x + 4 x3 - y2

But rather than plot our solution set on the torus we will plot it on the topologically equivalent saddle

surface because this looks nicer.

This is already in Weierstrass normal form, which will save a little work, but is an interesting cubic by

itself .

In[]:= ContourPlot [f8 ⩵ 0, {x, -4, 4}, {y, -6, 6}, ImageSize → Small]

Out[]=

-4 -2 0 2 4

-6

-4

-2

0

2

4

6

Our Weierstrass vector is

In[]:= wvf8 = weierstrassVector [f8]

Out[]= {0.996016 , -0.805458 }

and our half periods are

In[]:= whp8 = ReIm [WeierstrassHalfPeriods [wvf8]]

Out[]= {{0., -1.47304 }, {1.4832, -0.736519 }}

Our lattice here is not rectangular

273 | SurfaceStoryPartIII.nb

In[]:= Graphics [{{Blue, PointSize [.02],

Point [Flatten [Table [2 i whp8〚1〛 + 2 j whp8〚2〛, {i, -2, 2}, {j, -2, 2}], 1]]},

{Red, PointSize [.02], Point [{0, 0}]}, {Green, Thickness [.01],

Line [{-whp8〚1〛, {2 whp8〚2, 1〛, 0}, whp8〚1〛, - {2 whp8〚2, 1〛, 0}, -whp8〚1〛}]},
{Black, Text [{0, 1.473 }, -whp8〚1〛 + .3], Text [{2.97, 0}, {4.2, 0}]}}, ImageSize → 200]

Out[]=

{0, 1.473 }

{2.97 , 0}

The region enclosed by the green diamond is a fundamental domain.

In[]:= B8 = {{1.0590557059044317` , -2.1327298486921644` },

{1.0590557059044317` , 2.1327298486921644` }};

In[]:= B8 // MatrixForm

Out[]//MatrixForm=

1.05906 -2.13273

1.05906 2.13273

Then the linear rotation given by B8 takes the side of the fundamental domain between the 2 marked

points to the π - π square.

In[]:= B8.-whp8〚1〛
B8.{2 whp8〚2, 1〛, 0}

Out[]= {-2.77266, 0.662988 }

Part : Part 2 of {{0. , -1.02932 }, {1.82442 , 0. }}[{0.996016 , -0.805458 }] does not exist .

Out[]= {0. + 2.11811 {{0., -1.02932 }, {1.82442, 0.}}[{0.996016 , -0.805458 }]〚2, 1〛,
0. + 2.11811 {{0., -1.02932 }, {1.82442, 0.}}[{0.996016 , -0.805458 }]〚2, 1〛}

We will focus on the map from the π - π square to and from the normal form cubic f8. We could then

transport this to the torus, saddle surface or even hyperboloid if we wish. We will call these the Up and

Down maps. The Up map is fairly easy

SurfaceStoryPartIII.nb | 274

In[]:= wUp8 [{u_, v_}] := With [{ip = Inverse [B8].{u, v}}, wPar [ip〚1〛 + I ip〚2〛, wvf8]]

The input is any real pair {u, v} with -π ≤ u, v ≤ π and output is a complex solution of f8 = 0.

Testing we have somewhat uneven accuracy

In[]:= Do[Echo [f8 /. Thread [{x, y} → wUp8 [RandomReal [{-Pi, Pi}, 2]]]], {3}]

» - 1.11022 × 10-15
+ 1.94289 × 10-15 ⅈ

» - 6.99441 × 10-15
+ 1.03806 × 10-14 ⅈ

» - 1.11355 × 10-13
- 1.92069 × 10-13 ⅈ

This will be good enough for plotting purposes, but we must use the more complicated inverse

In[]:= wDown8 [{x_, y_}] := reduce2pipi [B8.ReIm [inverseWP [{x, y}, wvf8]]]

Here the input is a complex solution of f8 = 0 and output is a pair of real numbers in the π - π square.

In[]:= p1 = {-0.7180023637877024` , 0.2`};

f8 /. Thread [{x, y} → p]

Out[]= -2.60817 + 1.72716 ⅈ
In[]:= q1 = wDown8 [p1]

Out[]= {-3.06133, -3.06133 }

In[]:= Chop [wUp8 [q1]]

Out[]= {-0.718002 , 0.2}

A pseudo random complex example is

In[]:= q2 = {-1.1200065916117765` , 3.034594424900483` }

Out[]= {-1.12001, 3.03459 }

In[]:= p2 = wUp8 [q2]

f8 /. Thread [{x, y} → p2]

Out[]= {0.0369951 - 0.468161 ⅈ, 0.940683 + 0.461922 ⅈ}
Out[]= -2.10942 × 10-15

- 1.11022 × 10-15 ⅈ
In[]:= q2a = wDown8 [p2]

q2 - q2a

Out[]= {-1.12001, 3.03459 }

Out[]= 0., 3.55271 × 10-15 
These illustrate how these maps go where they are supposed to do and are two sided inverses. Note

above that p1 was a real solution of f8 and the result of wDown8 was a pair of equal real numbers. In

the complex case one did not get a pair of equal real numbers. This suggests that the real diagonal of

the π - π square maps to the real locus and conversely. For example note

275 | SurfaceStoryPartIII.nb

In[]:= Show [ContourPlot [f8 ⩵ 0, {x, -3, 3}, {y, -6, 6},

ContourStyle → Directive [Thickness [.01], Orange]], ParametricPlot [Chop [wUp8 [{t, t}]],

{t, -Pi, Pi}, PlotStyle → Directive [Black, Dashed]], ImageSize → Small]

Out[]=

-3 -2 -1 0 1 2 3

-6

-4

-2

0

2

4

6

Now we decide to plot the complex solution set of f8 on the saddle surface instead of the torus, so we

modify our up and down maps slightly, multiplying wDown8 by .5 and wUp8 by 2 to have the correct

domain π /2 ≤ s, t ≤ π /2 for our SSpar parameterization from section 5.2.

In[]:= Show [SSparSpace , ParametricPlot [{t, t}, {t, -Pi / 2, Pi / 2}, PlotStyle → Blue]]

Out[]=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

The red lines are the locus of those points in this domain that go to infinite points under SSpar, the blue

obviously the diagonal. Since the red lines are given by x = ssa and y = ssb the intersection points are

{ssa,ssa} and {ssb,ssb} where

In[]:= ssa = N[ArcTan [3]]

ssb = N[ArcTan [1]]

Out[]= 1.24905

Out[]= 0.785398

These correspond to infinite points on the saddle surface and the following points of f8

In[]:= jf = Chop [wUp8 [2 {ssa, ssa}]]

kf = Chop [wUp8 [2 {ssb, ssb}]]

Out[]= {-0.339802 , -0.993461 }

Out[]= {0.427876 , -0.832241 }

On the other hand the curve f8 has a single infinite point {0,1,0}. But the infinite point for the Weier -

SurfaceStoryPartIII.nb | 276

strassP function is 0 so

In[]:= wUp8 [{0, 0}]

Power : Infinite expression
1

(0. + 0. ⅈ)2 encountered .

Power : Infinite expression
1

(0. + 0. ⅈ)3 encountered .

Out[]= {ComplexInfinity , ComplexInfinity }

and so

In[]:= is = SSpar [{0, 0}]

Out[]= {2.20657, -1.44126, -3.18024 }

is the corresponding point on the saddle surface.

As in the first example we can plot selected points as in the following table. One comment is that since

wDown8 has a corrector step one can type in an approximate point in wDown8 to get an accurate

point in the saddle surface and then use wUp8 to get a very accurate point in the curve. For example

for my first point

In[]:= f8 /. Thread [{x, y} → {.373, .801}]

Out[]= -0.0000765738

In[]:= as = SSpar [.5 wDown8 [{.373, .801}]]

Out[]= {1.17821, -0.910332 , -1.07256 }

In[]:= af = Chop [wUp8 [2 InvSS [as]]]

f8 /. Thread [{x, y} → af]

Out[]= {0.373058 , 0.800976 }

Out[]= -1.11022 × 10-15

so I have improved my residue by a factor of 1010.

It is also worth noting that it is easy to find points on the saddle surface, just think of two real numbers,

say r,s then {r,s,r s} is a point. One then then use WUp8 to find a point in the solution set. For example

let

In[]:= gs = {3, 1.1, 3.3}

Out[]= {3, 1.1, 3.3}

In[]:= gf = Chop [wUp8 [2 InvSS [gs]]]

Out[]= {0.454513 - 0.21764 ⅈ, -0.713384 + 0.197311 ⅈ}
In[]:= f8 /. Thread [{x, y} → gf]

Out[]= 3.88578 × 10-16
+ 9.4369 × 10-16 ⅈ

277 | SurfaceStoryPartIII.nb

0.805458 - 0.996016 x + 4 x3 - y2 = 0

Out[]=

a

b

c

d

e

f

j
k

i

i

-2 -1 0 1 2 3

-6

-4

-2

0

2

4

6

Out[]=

point solution f8 saddle surface

a {0.373058 , 0.800976 } {1.17821 , -0.910332 , -1.07256 }

b {0.0557982 , -0.866358 } {7.05402 , 1.13234 , 7.98754 }

c {1.77165 , -4.61346 } {2.84656 , -2.19231 , -6.24053 }

d {-0.4, 0.973583 } {0.145976 , -0.651173 , -0.095056 }

e {1.33535 , 3. } {1.65126 , -1.10044 , -1.81711 }

f {-0.719703 , -0.176495 } {-2.15759 , -0.378341 , 0.816306 }

g {0.454513 - 0.21764 ⅈ, -0.713384 + 0.197311 ⅈ} {3, 1.1, 3.3 }

h {0.249724 - 0.0718865 ⅈ, -0.776975 - 0.0124136 ⅈ} {4, 1, 4}

i infinite Point {2.20657 , -1.44126 , -3.18024 }

j {-0.339802 , -0.993461 } infinite Point

k {0.427876 , -0.832241 } infinite Point

l {-1.21094 - 0.307908 ⅈ, -1.12035 + 2.22907 ⅈ} {5, -0.8, -4}

m {-0.0439841 - 0.17124 ⅈ, -0.935075 - 0.0998141 ⅈ} {5, 0, 0}

n {-0.293159 + 0.652481 ⅈ, -1.61489 + 0.336897 ⅈ} {0, -5, 0}

o {0.219746 + 0.391215 ⅈ, -0.585984 + 0.343408 ⅈ} - 5 , - 5 , 5
p {-0.0428533 + 0.392137 ⅈ, -1.01089 + 0.30821 ⅈ} {-2, -6, 12 }

q {-9.98835 - 0.196065 ⅈ, 1.85994 - 63.0407 ⅈ} {1.8, -2, -3.6 }

r {-1.37753 + 0.802384 ⅈ, -2.99584 - 2.57118 ⅈ} {1, -7, -7}

Out[]=

SurfaceStoryPartIII.nb | 278

References

[Plane Curve Book] Barry H. Dayton, A numerical approach to Real Algebraic Curves with the Wolfram

Language, Wolfram Media, 2018. The print version is available only from Amazon.com but for Mathe -

matica users notebook versions are available free from Wolfram media (Zip file) or the author’s website

https://barryhdayton.space/curvebook/ChapterNotebooks.html on a chapter by chapter basis. The

latter notebooks contain some of the corrections noted on the author’s website.

[Space Curve Book] Available on author’s website https://barryhdayton.space/SpaceCurves/spin -

dex.html

[Surface Story] Available on author's website https://barryhdayton.space/SurfaceBook/surfdex.html

[Croom] Fred H. Croom, Principles of Topology , Dover Publications, 1989.

279 | SurfaceStoryPartIII.nb

