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5.  Topology And Complex Curves
In this  appendix  we  will  change  from  algebraic  geometry  to topology,  specifically  the  maps  between  

surfaces  may  only  be continuous,  not  necessarily  projective  linear  transformations,  eg. fractional  linear  

transformations.  Also,  later  in this  appendix  we  will  be  interested  in complex  curves  rather  than  just  

real  ones.   In general  our  global  function  naming  convention  will  not  follow  our  previous  rules,  however  

they  will  appear  at the  end  of GlobalFunctionsNS.nb   The  reader  interested  in this  topic  may  not  need  

to read  the  previous  chapters  although  some  reference  to earlier  chapters  of this  book  will  occur.

In section  5.1  using  the  chromatic  number  we  show  that  the  sphere  is not  topologically  equivalent  to 

the  torus  or saddle  surface.   On  the  other  hand,  in 5.2  and  5.3  we  show  that  the  projective  hyperboloid  

and  saddle  surface  are  topologically  equivalent  to the  to the  torus  by giving  explicit  invertible  continu -

ous  functions,  known  as homeomorphisms.   In sections  5.4  and  5.5  we  redo  some  material  in my  Plane  

Curve  Book   on  normal  forms  correcting  mistakes  and  extending  them  to the  complex  domain.   And  

finally  in sections  5.6  and  5.7  we  give  explicit  descriptions  of the  known  topological  structure  of the  

complex  solution  spaces  of smooth  plane  conic  and  cubic  curves.

This  stand  alone  version  of Chapter  5 uses  some  information  from  my  Plane  Curve  Book  and  Surface  

Story  version  1  but  can  be read  separately.   The  Mathematica   GlobalFunctionsNS.nb  notebook  for  my  

Surface  Story  has  been  updated  to include  the  main  functions  in this  appendix  for  those  who  want  to 

experiment  with  my  code.

5.1 Topology of Surfaces -- Chromatic Number

While  I have  viewed  Algebraic  Geometry  as the  study  of projective  linear  transformations  Topology  is 

the  study  of continuous  functions.   In this  book  topological  spaces  will  be  subspaces  of projective  real  

or complex  spaces.   The  main  question  is now   When  are  two  surfaces  topologically  equivalent.   If one  

can  find  a bi-continuous  invertible  function  between  the  surfaces,  they  are  topologically  equivalent.   If 

we work  in the  affine  domain   the  invertible  functions  should  be extend  to the  projective  closure  of the  

affine  surface.

But  if we  can't  think  of an obvious  equivalence  how  can  we  prove  that  there  is none?   Topologists  then  

depend  on  surface  invariants  preserved  by topological  equivalence.   O�en  they  rely  on  homology  or 

homotopy  groups  to get  these  invariants.   I don’t  want  to go into  this  subject  in this  book.   One  visual  

invariant  is easy  to explain  and  see,  even  if it not  necessarily  easy  to prove,  is the  chromatic  number  of a 

surface.   

These  derive  from  the  famous  Four  Color  Theorem  which  is normally  stated  on  the  affine  plane.   It 

derives  from  the  number  of colors  a cartographer  needs  in coloring  a map  where  geographic  or politi -

cal  regions  are  separated  by continuous  curves  or curve  segments.   These  concept  extends  not  just  to 

the  plane  but  any  topological,  two  dimensional,  surface.   The  number  of colors  necessary  is called  the  
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chromatic  number .

For  the  plane  or sphere  the  chromatic  number  is 4, this  is known  as the  Four  Color  Theorem  .  This  is 

not  trivial,  the  problem  goes  back  to the  1850'  s when  DeMorgan  proposed  this  as a problem  from  

cartography  to the  mathematical  community  .  In 1879  Alfred  Kemp  proposed  a proof  which  later  was  

seen  to have  a flaw  .  However  in 1890  Percy  Heawood  showed  his  method  did  show  that  at most  5 

colors  are  needed   for  the  plane,  he,  Heawood,  also  gave  a formula  for  the  number  of colors  needed  for  

other  surfaces  depending  on  their  genus  which  is correct  except  for  the  Klein  bottle  but  the  proof  did  

not  cover  the  plane  and  sphere.   

But  going  from  5 colors  to 4 is difficult,  no  one  has  ever  displayed  a map  on  the  plane  or sphere  which  

can  not  be colored  with  4 colors.   But  no  one  has  ever  come  up  with  a theoretical  reason  why  one  

couldn’t  do  it.   What  mathematicians  have  done  is to show  that  there  are  only  finitely  many  configura -

tions  that  could  not  have  a 4 coloring  so if people  could  color  all  of  these  with  4 colors  then  we  would  

know  4 colors  are  sufficient.   But  there  are  a large  number  of  of  these  configurations,  they  have  many  

regions  and  are  hard  to enumerate.   So  it is impractical  to color  all  these  manually.   In 1976   Kenneth  

Appel  and  Wolfgang  Haken  used  a computer  to attempt  to color  all  of these  and  claimed  the  4 color  

problem  was  solved.   Your  author  was  at a large  math  conference  at the  time  and  many  mathemati -

cians  were  skeptical,   to them  a computer  calculation  was  not  a proof.   But  many  proofs  do  divide  the  

problem  into  cases,  just  in this  case  there  were  thousands  but,  in my  opinion,  that  should  not  affect  the  

validity  of the  proof.   But  others  felt  the  use  of computer  was  fine  but  the  program  need  to be carefully  

validated.   In fact,  it found  to have  errors  which  were  introduced  by the   programmers,  not  the  com -

puter.   Since  then  several  more  complicated  computer  methods  have  been  used  and  most  mathemati -

cians  are  now  satisfied  that  4 colors  are  sufficient.   I mention  this  example  because  it is the  first  exam -

ple  of the  computer  being  an integral  part  of a proof.

Earlier  there  were  some  who  claimed  that  even  3 colors  are  sufficient.   But  it is easy  to show  that  is not  

correct,  one  needs  only  to show  one  partition  that  can  not  be  colored  by 3 colors.   An  example  on  the  

sphere  is

Out[  ]=

Region  4 is the  outside  of the  circle  containing  1,2,3.  In this  example  each  region  meets  each  other  

region  in an arc.   Therefore  each  region  must  have  a different  color.   This  shows  4 colors  are  necessary.   
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The  chromatic  number  of the  sphere  is then  4.

The  point  of this  discussion  is that  if a surface  is partitioned  in n colors  then  any  surface  homeomorphic  

(topologically  equivalent)  also  has  a partition  with  n colors.  Any  homeomorphism  will  preserve  the  

partition.   So  to show  two  surfaces  are  NOT  homeomorphic  it is enough  to show  they  have  different  

chromatic  numbers.   I use  this  to show  that  the  sphere  is not  homeomorphic  to a torus.   The  following   

partition  shows  the  torus  has  chromatic  number  at least  7, it actually  is 7 exactly  but  we  don’t  need  

that  fact.

Out[  ]=

The  7 colors  are  white,  maroon,  blue,  green,  brown,  red  and  yellow.   These  different  views  show  each  

region  meets  each  other  region  so we  need  at least  7 colors.   We  have  proved  the  sphere  is not  topologi -

cally  equivalent  to a torus!   FYI  this  graphic  was  drawn  by Mathematica  using  a parameterization  of the  

torus  given  in the  next  section.

In sections  5.2,  5.3  below  I will  show  that  projective  hyperboloids   are  topologically  equivalent  to a 

torus.   So  we  should  be able  to find  a 7 coloring  of these  surfaces  with  each  color  touching  each  other  

color.   Unfortunately  because  , unlike  the  torus,  these  are  not  affine  surfaces  it gets  messy  and  I do  not  

know  of a nice  example.   But  I do  have  nice  6 colorings  of these  spaces  which  show  their  chromatic  

number  is at least  6, in particular  they  are  not  topologically  equivalent  to spheres  by the  5 color  theo -

rem  for  the  sphere  which,  as we  saw,  is considerably  easier  than  the  4 color  theorem.

For  the  standard  hyperboloid  x2 + y2 - z2 = 1 here  are  some  graphics.
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Out[  ]=

The  small  light  colored  balls  show  the  red  and  blue  regions  are  connected  in projective  space.

  For  the  saddle  surface   z = x y  we  have

Out[  ]= SSGraphic SSGraphic

Here  it is less  obvious  that  the  red,  green,  cyan  and  magenta  regions  are  connected  projectively.   The  

following  graphic  showing  also  4 lines  on  the  surface  help.

Out[  ]=

I claim  that  the  infinite  points  of these  lines,  which  must  lie  in the  projective  surface,  are  arbitrarily  near  

both  affine  components  of these  regions.   For  example  the  red  region  is  given  by  -2 ≤ y ≤ 2 and  x ≤ -3  

or 3 ≤ x.

In[  ]:= lr = {4 - 8.420822433864302` t, -0.7`, -2.8` + 5.8945757037050095` t};

The infinite point is {-8.43082 , 0, 5.89458 , 0} from Section 1.10  .2

However  if we  consider  the  point  in the  lower  component

In[  ]:= lrp = lr /. t → 100

Out[  ]= {-838.082, -0.7, 586.658 }
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which  is equivalent  to the  projective  point

In[  ]:= Append [lrp, 1] / 838.082 * 8.43082

Out[  ]= {-8.43082, -0.00704176 , 5.90158, 0.0100597 }

Likewise  in the  upper  component

In[  ]:= lrn = lr /. t → -100

Append [lrn, 1] / 846.082 * -8.42082

Out[  ]= {846.082, -0.7, -592.258 }

Out[  ]= {-8.42082, 0.00696691 , 5.89458, -0.00995272 }

Both  of these  projective  points  are  very  close  to the  infinite  point  of this  line  as claimed  .

5.2 Global Functions for Chapter 5

In this  section  we  give  some  global  functions  that  we  will  need  in the  sequel.   These  give  continuous  

functions  but  are  not,  in general,  algebraic.  The  reader  is not  expected  to read  this  section  now  but  

these  functions  are  needed  in the  sequel  and  are  given  here  so as to not  interrupt  the  story  later  with  

the  definitions.    These  functions  will  be  available  to users  of  Mathematica  in the  GlobalFunctionsN 
S.nb notebook  which  will  be  updated  when  this  chapter  is posted.

Hyperbola

Our  standard  hyperbola  is

In[  ]:= hyp = x^2 + y^2 - z^2 - 1;

We  now  give  a parameterization  of this  hyperbola  on  the  square   -π /2 ≤ u, v ≤ π /2

In[  ]:= HparSpace :=

ContourPlot [{Tan[u] Tan[v] ⩵ 1}, {u, -Pi / 2, Pi / 2}, {v, -Pi / 2, Pi / 2}, ContourStyle → Red]

In[  ]:= Show [HparSpace , ImageSize → Small ]

Out[  ]=
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The  red  line  will  map  to maps  to the  infinite  line  of hyperbola.   This  red  line  is given  by x+y=Pi/2  or x+y=-

Pi/2.   One  reason  for  this  somewhat  non-standard  parameterization  of the  hyperboloid  is that  it takes  
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the  square  -π /2 ≤ u, v ≤ π/2 which  is compact,  to the  entire  projective  hyperboloid  which   is also  

compact.

The  parameterization  is 

In[  ]:= Hyp := 
1 + Tan[u] Tan[v]

-1 + Tan[u] Tan[v]
,

Tan[u] - Tan[v]

-1 + Tan[u] Tan[v]
,

Tan[u] + Tan[v]

-1 + Tan[u] Tan[v]


Usage:   for  point  in HparSpace   -Pi /2 ≤ u, v ≤ Pi /2 not  on  infinite  red  line  the  following  places  a point  

on the  standard  hyperbola   

In[  ]:= hp = Hyp /. Thread [{u, v} → {.3, -.8}]

hyp /. Thread [{x, y, z} → hp]

Out[  ]= {-0.51687, -1.01553, 0.546302 }

Out[  ]= 1.11022 × 10-16

An important  feature  of this  parameterization  is that  we  have  an inverse  function  on  the  interior.   If the  

point  p is not  on  the  hyperbola  to a sufficient  tolerance  an error  message  will  be  produced.

In[  ]:= InvHyp [p_] := Module {solab, a, b, c, d, ab, a1, b1, t0},

solab = a →
-1 - 1 - c2 + d2

c - d
, b →

c

c-d
-

d

c-d
+

c 1-c2+d2

c-d
-

d 1-c2+d2

c-d

c + d
,

a →
-1 + 1 - c2 + d2

c - d
, b →

c

c-d
-

d

c-d
-

c 1-c2+d2

c-d
+

d 1-c2+d2

c-d

c + d
;

ab = solab〚1〛 /. {c → p〚2〛, d → p〚3〛};
{a1, b1} = {a, b} /. ab;

If[Norm [(Hyp /. {u → ArcTan [a1], v → ArcTan [b1]}) - p] < .0005,

Return [{ArcTan [a1], ArcTan [b1]}]];

ab = solab〚2〛 /. {c → p〚2〛, d → p〚3〛};
{a1, b1} = {a, b} /. ab;

If[Norm [(Hyp /. {u → ArcTan [a1], v → ArcTan [b1]}) - p] < .0005,

Return [{ArcTan [a1], ArcTan [b1]}]];

Echo [p, "Possible Numerical Error"];

{}

In[  ]:= InvHyp [hp]

Out[  ]= {0.3, -0.8}
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In[  ]:= hp = {0, 1, 0}

pq = InvHyp [hp]

Hyp /. Thread [{u, v} → pq]

Out[  ]= {0, 1, 0}

Out[  ]= - π
4
,

π
4


Out[  ]= {0, 1, 0}

The  other  important  thing  is that  for  every   u Hyp takes  {u,-v}  to the  same  point  as {u,v},  and  also  takes  {-

u,v}  to {u,v}  for  every  u,v.   Because  zero  denominators  are  involved  we  must  use  limits  for  this  

evaluation.

In[  ]:= rr = RandomReal [{-Pi / 2, Pi / 2}]

Out[  ]= 0.981721

In[  ]:= Limit [Hyp /. Thread [{u, v} → {rr, t}], t → -Pi / 2]

Limit [Hyp /. Thread [{u, v} → {rr, t}], t → Pi / 2]

Out[  ]= {1., -0.668218 , 0.668218 }

Out[  ]= {1., -0.668218 , 0.668218 }

Likewise

In[  ]:= Limit [Hyp /. Thread [{u, v} → {t, rr}], t → -Pi / 2]

Limit [Hyp /. Thread [{u, v} → {t, rr}], t → Pi / 2]

Out[  ]= {1., 0.668218 , 0.668218 }

Out[  ]= {1., 0.668218 , 0.668218 }

Already  the  topologists  know  the  image  of this  parameterization  will  give  topologically  a torus  so this  

invertible  parameterization  gives  a proof  that  the  projective  hyperboloid  is a topological  torus,  we  will  

give  a direct  proof  shortly.

Torus

We  use  this  equation  for  our  standard  torus

In[  ]:= toruspipi2 :=
9 π4

16
-
5 π2 x2

2
+ x4 -

5 π2 y2

2
+ 2 x2 y2 + y4 +

3 π2 z2

2
+ 2 x2 z2 + 2 y2 z2 + z4

In[  ]:= TGraphic := ContourPlot3D [toruspipi2 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5},

ContourStyle → Opacity [1], Mesh → None, Boxed → False, Axes → False ]
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In[  ]:= Show [TGraphic , ImageSize → Tiny ]

Out[  ]=

A parameterization  is given  on  the  entire  square   -π ≤ r, t ≤ π , t is an  angle  about  {0,0,0}  while  r is an 

angle  about  the  center  circle  of radius  π .

In[  ]:= Tpar :=

 π
2

- r Cos[t],  π
2

- r Sin[t], π 2

4
- - π

2
- r2  r ≤ 0

 π
2

+ r Cos[t],  π
2

+ r Sin[t], -
π 2

4
- - π

2
+ r2  r > 0

0 True

Usage

In[  ]:= par = {2 Pi / 3, -Pi / 4}

tp = Tpar /. Thread [{r, t} → par]

N[tp]

Out[  ]=  2 π
3

, -
π
4


Out[  ]=  7 π
6 2

, -
7 π

6 2

, -
2 π
3



Out[  ]= {2.59168, -2.59168, -1.48096 }

In[  ]:= toruspipi2 /. Thread [{x, y, z} → N[tp]]

Out[  ]= 1.42109 × 10-14

Again  an important  property  of this  parameterization  is we  have  an inverse

In[  ]:= tangle [p_] := With [{a = VectorAngle [p, {1, 0}]}, If[N[{Cos[a], Sin[a]}] ⩵ p / Norm [p], a, -a]]

In[  ]:= InvTor [{x_, y_, z_}] := Piecewise [{{{Pi / 2 - Norm [{x, y}], tangle [{x, y}]}, z ≥ 0},

{{-Pi / 2 + Norm [{x, y}], tangle [{x, y}]}, z < 0 }}]

In[  ]:= InvTor [tp]

Out[  ]=  2 π
3

, -
π
4


These  parameterizations  with  similar  (factor  of 2)  domains  show  directly  that  the  standard  hyperbola  

and  standard  torus  are  topologically  equivalent,  that  is,  homeomorphic.   In fact  we  can  map  the  torus  

to the  hyperbola  and  hyperbola  to torus  directly
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In[  ]:= T2H[{x_, y_, z_}] := Hyp /. Thread [{u, v} → .5 InvTor [{x, y, z}]]

In[  ]:= H2T[{x_, y_, z_}] := Tpar /. Thread [{r, t} → 2 InvHyp [{x, y, z}]]

Recall

In[  ]:= N[tp]

Out[  ]= {2.59168, -2.59168, -1.48096 }

In[  ]:= hp1 = T2H[tp]

Out[  ]= {-0.164525 , -1.24969, -0.767327 }

In[  ]:= hyp /. Thread [{x, y, z} → hp1]

Out[  ]= -5.55112 × 10-16

In[  ]:= H2T[hp1]

H2T[hp1] - N[tp]

Out[  ]= {2.59168, -2.59168, -1.48096 }

Out[  ]= 2.22045 × 10-15, 4.44089 × 10-15, -4.44089 × 10-16 

Saddle  Surface

Now  consider  the  saddle  surface  z= x y.  In Chapter  2 of the  Surface  Story  it is shown  that  the  saddle  

surface  is algebraically  equivalent  to the  standard  hyperbola.   Therefore  we  can  use  our  parameteriza -

tion  of the  hyperboloid  above  to give   parameterization  is given  on   -π /2 ≤ s, t ≤ π /2 by

In[  ]:= Ht := {{1.421753448878254` , 2.4001312247824407` ,

-1.4217534488782626` , -2.4001312247824362` },

{-1.3682399203220887` , 0.05585142943475707` , 0.7762628086454613` ,

1.1281027939185155` }, {-2.550704470740892` , -1.499868080914514` ,

0.08976727903245796` , 2.957640849193627` }, {1.1547005383792515` ,

0.5773502691896257` , -1.1547005383792515` , -0.5773502691896266` }}

In[  ]:= Ht // MatrixForm

Out[  ]//MatrixForm=

1.42175 2.40013 -1.42175 -2.40013

-1.36824 0.0558514 0.776263 1.1281

-2.5507 -1.49987 0.0897673 2.95764

1.1547 0.57735 -1.1547 -0.57735

In[  ]:= SSpar [{s_, t_}] := Simplify [TransformationFunction [Ht][Hyp /. {u → s, v → t}]]

This  is complicated
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In[  ]:= SSpar [{s, t}]

Out[  ]=  6.6197 + Tan[s] (1.6946 - 1.6946 Tan[t]) - 6.6197 Tan[t]

3. - 3. Tan[t] + Tan[s] (-1. + 1. Tan[t])
,

-4.32379 + Tan[s] (1.44126 - 0.41593 Tan[t]) + 1.24779 Tan[t]

3. - 3. Tan[t] + Tan[s] (-1. + 1. Tan[t])
,

-9.54073 + Tan[s] (-2.44237 + 0.704834 Tan[t]) + 2.75333 Tan[t]

3. - 3. Tan[t] + Tan[s] (-1. + 1. Tan[t])


The  infinite  part  is  (x - ssa ) (y - ssb ) = 0  where

In[  ]:= ssa = N[ArcTan [3]]

ssb = N[ArcTan [1]]

Out[  ]= 1.24905

Out[  ]= 0.785398

Thus  the  parameter  space  for  our  saddle  surface  looks  like  this  where  the  red  lines  map  to the  infinite  

curve  of the  saddle  surface  .

In[  ]:= SSparSpace = ContourPlot [{x ⩵ ssa, y ⩵ ssb}, {x, -Pi / 2, Pi / 2},

{y, -Pi / 2, Pi / 2}, ContourStyle → Pink, ImageSize → Small ]

Out[  ]=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Again  we  can  find  and  inverse  using  the  inverse  we  already  have

In[  ]:= InvSS [{x_, y_, z_}] := InvHyp [TransformationFunction [Inverse [Ht]][{x, y, z}]]

Warning  : this  only  takes  actual  points  given  numerically  .  Does  not  give  a formula.   It is useful  to note  

that  we  can  easily  find  points  on  the  saddle  surface  by picking   real  numbers  a,b  and  the  point  is then  

{a, b, a b}.

In[  ]:= inp = InvSS [{2, 3, 6}]

Out[  ]= {-0.166184 , 0.915161 }

In[  ]:= SSpar [inp]

Out[  ]= {2., 3., 6.}
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Finally  we  get,  for  actual  points,  a map  from  the  Torus  to the  Saddle  Surface  showing  that  these  are  

also  homeomorphic.

In[  ]:= T2SS [{x_, y_, z_}] := SSpar [.5 InvTor [{x, y, z}]]

The  inverse  is

In[  ]:= SS2T [{x_, y_, z_}] := Tpar /. Thread [{r, t} → 2 InvSS [{x, y, z}]]

In[  ]:= t236 = SS2T [{2, 3, 6}]

Out[  ]= {-0.488395 , 1.83943, 0.966279 }

In[  ]:= toruspipi2 /. Thread [{x, y, z} → t236 ]

Out[  ]= 0.

In[  ]:= T2SS [t236 ]

Out[  ]= {2., 3., 6.}

Note  the  infinite  curve  on  the  saddle  surface  comes  from

In[  ]:= TSSGraphic =

Show [TGraphic , ParametricPlot3D [Tpar /. {r → 2 ssa}, {t, -Pi, Pi}, PlotStyle → White ],

ParametricPlot3D [Tpar /. {t → 2 ssb}, {r, -Pi, Pi}, PlotStyle → White ],

ViewPoint → Below ]

Out[  ]=

5.3 Topology of Hyperboloids

In this  section  I show  that  all  projective  hyperboloids  are  topologically  equivalent  to the  torus.   In 5.1  

we showed  the  torus  is not  equivalent  to the  sphere  so smooth  projective  quadric  surfaces  are  not  the  
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same  topologically.

I suggested  that  the  reader  not  read  Section  5.2  carefully,  but  if you  did  then  you  may  not  wish  to read  

this  section  which  is a more  readable  but  less  computational  version  of 5.2.

I f first  show  the  hyperboloid  is topologically  a torus.  Here  we  have  explicit  invertible  continuous  

functions  defined  in 5.2  T2H  and  H2T.  See  examples  in 5.2.

In[  ]:=

T2H

H2T

Then  since  all  hyperboloids  are  equivalent  by projective  linear  transformations  which  are  continuous  

they  are  all  topologically  equivalent  to the  torus.   

For  the  saddle  surface  z = x y  in section  5.2  we  introduced  a parameterization  of the  saddle  surface  

SSPar on  the  square   -(π /2) ≤ x ≤ π /2 and   -(π /2) ≤ y ≤ π /2.  We  identified  2 lines  in this  square  

which  map  to the  infinite  curve   x = ssa and  y = ssb where  ssa is approximately  1.24905  and  ssb is 

approximately  0.785398.   This  parameterization  has  an inverse  InvSS.  

On the  other  hand  we  gave  the  parameterization  of the  Torus   by Tpar on the  square  -π ≤ x ≤ π  and  

-π ≤ y ≤ π  with  inverse  InvTor .  In this  case  there  are  no  infinite  points  to worry  about.   

We  can  go back  and  forth  between  these  parameter  spaces  by multiplication  or division  by 2.  Then  we  

can  map  the  torus  to the  hyperboloid  by sending  a point  on  the  torus  by applying InvTor, dividing  by 2

and  applying SSpar.  We  called  this  T2SS with  inverse  SS2T.   The  points  of the  torus  that  land  in the  

infinite  part  of the  saddle  surface  come  from  the  points  of the  torus  parameter  space  with  x = 2 ssa and  

y =2 ssb.  So  the  picture  of the  points  on  the  torus  going  to affine  points  of the  saddle  surface  looks  like  

this  with  the  white  curves  removed.   That  is,  this  picture  shows  the  actual  domain  of T2SS as defined  in 

5.2.
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In[  ]:= TSSGraphic =

Show [TGraphic , ParametricPlot3D [Tpar /. {r → 2 ssa}, {t, -Pi, Pi}, PlotStyle → White ],

ParametricPlot3D [Tpar /. {t → 2 ssb}, {r, -Pi, Pi}, PlotStyle → White ],

ViewPoint → Below, ImageSize → Small ]

Out[  ]=

I claim  that  that  the  function  T2SS  can  be extended  on  the  whole  torus  as a function  to the  projective  

saddle  surface.   

Here  is a graphic  showing  the  map  between  a saddle  surface  and  a torus.   The  curves  correspond  by 

color.   The  two  graphics  on  the  right  of tori  show  different  views  of the  same  torus.

Out[  ]=

It is easy  to find  parametric  functions  giving  the  horizontal  colored  circles  on  the  hyperboloid.   The  

mapping  sends  them  to the  more  complicated  curves  on  the  torus.  The  white  curve  on  the  torus  is the  

image  of the  infinite  curve  of the  hyperboloid.   I leave  the  details  for  the  reader.

5.3.2 A topological  Construction

We  leave  our  study  of topology  with  one  more  well  known  result.

Theorem  :  Suppose  we  have  a continuous  map  from  a plane  square  to a topological  space    which  

sends  points  on  opposite  side  of a plane  square  to the  same  point  of   .  Then  this  map  factors  through  the  

torus.   In particular  f this  map  is 1-1  on  the  interior  of the  square  and  onto  then     is homeomorphic  to the  

torus.  

To be more  specific  we  will  use  the  square  π /2 ≤ x, y ≤ π /2.  If our  map  is called  f  then  we  are  assum -
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ing  f [{x, -π /2}] = f [{x , π /2}]  for  all  x  and  f [{-π /2, y}] = f [{π /2, y}] for  all  y.

A reference  for  this  theorem  is the  book  Principles  of Topology  by  Fred  H.  Croom, Dover  Publications,  

1989.  This  theorem  is essentially  his  Example  7.4.2.   

Croom's argument  uses  the  idea  of a quotient  space.   For  any  equivalence  relation  ~ on  a topological  

space   , Croom defines  a new  topological  space  /~ whose  elements  are  the  equivalence  classes  of ~.  

From  set  theory  there  is an onto  projection    :  ⟶  /~ sending  each  element  to its  class.   One  defines  

a set  in /~ to be open  if its  inverse  image  in  is open,  making    continuous.   Moreover,  as Croom 

notices,   any  function  f : ⟶ factors  through   , that  is there  is a function  f * :  / ~ ⟶  with  f = f * ∘ , 

our  definition  of the  topology  on  /~ makes  f * continuous.   Moreover  Croom’s Theorem  7.16  says  that  if 

f is onto  then  f * is a homeomorphism.

Applying  this  to our  map  Hyp from  the  square  to the  torus  then  the  relation  that  Hyp sends  points  {x,  

-π/2} and  {x, π /2} to the  same  point  on  the  torus  as well  as with  {-π /2, y} and  {π /2, y} so  defining  the  

relation  ~ by  {x,  -π/2} ~{x , π /2},  {-π /2, y}~{π /2, y} with  every  interior  point  related  only  to itself  shows  

that  quotient  space  is homeomorphic  to the  torus.   But  the  hypotheses  of our  theorem  above  says  our  

continuous  function  also  has  the  same  quotient  space  so its  image   is also  homeomorphic  to the  torus.

An easy  modification  of this  is the  classical  result

Corollary  : Suppose  f is a continuous  function  on  the  real  plane,  or complex  numbers,  which  is periodic  

in in each  variable  with  period  2 π , and  let  {a,b}~{c,d}  if and  only  if a = b + 2 j π  and  c = 2 k π  for  

integers  j, k.  Then  the  quotient  space  ℝ2  ~ is homeomorphic  to a torus  and  thus  f  can  be viewed  as 

mapping  the  plane  to a torus.

A useful  tool  here  is to find  a canonical  point  in our  square  equivalent,  in the   relation  of the  corollary,  

to a point  in the  original  square   -π ≤ x, y ≤ π .

Later  we  will  encounter  doubly   functions  with  periods  2π  in both  directions,  to reduce  to our  parame -

ter  square   -π ≤ u, v ≤ π  we  use  the  following  global  function  which  is initiated  here  and  our  Global  

Functions  notebook.

In[  ]:= reduce2pipi [{a_, b_}] := Module [{c, d},

c = a; d = b;

While [c < -Pi, c = c + 2 Pi];

While [c > Pi, c = c - 2 Pi];

While [d < -Pi, d = d + 2 Pi];

While [d > Pi, d = d - 2 Pi];

N[{c, d}]]

For  example  let

In[  ]:= Clear [a, b]

a = {9.35, -17.12 };

b = reduce2pipi [a]

Out[  ]= {3.06681, 1.72956 }
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In[  ]:= a - b

Out[  ]= {6.28319, -18.8496 }

where

In[  ]:= (a - b) / 2 / π
Out[  ]= {1., -3.}

5.4 Normal  Forms in Complex  Algebraic  Geometry

5.4.1  The cTransform

We  now  temporarily  change  our  focus  back  to algebraic  geometry,  but  unlike  most  of the  rest  of my  

books  we  will  look  at complex  algebraic  geometry.   We  will  take  a new  look  at sections  7.3  and  7.5  in my  

Plane  Curve  Book .   

Our  first  tool  is the  cTransform.   Here  is the  updated  version  with  a new  name  for  conics  as well  as 

some  other  renamed  subroutines.   The  important  thing  is that  they  all  work  in the  complex  case.

cTransform2 [f_, p_, x_, y_] := Module [{fh, ph, nh, t, cs, A, d},

d = tDegMD [f, {x, y}];

fh = Expand [t^d * (f /. Thread [{x, y} → {x / t, y / t}])];

ph = If[Length [p] ⩵ 2, N[Append [p, 1]], N[p]];

ph = ph / Norm [ph];

nh = {D[fh, x], D[fh, y], D[fh, t]} /. Thread [{x, y, t} → ph];

nh = nh / Norm [nh];

cs = Cross [nh, ph];

cs = cs / Norm [cs];

A = {cs, ph, nh}];

Here  we  have  a curve  f  in 2 variables  and  a point  p  on  the  curve.   This  returns  a 3⨯3 matrix  such  that  the  

Transformation  Function  takes  p to the  infinite  point  {0,1,0}  and  the  tangent  line  to the  infinite  tangent  

line  at that  point.

infiniteConicPoints2D [f_, x_, y_] := Module [{mf, rrl, sv}, mf = FromCoefficientRules [

Select [CoefficientRules [f, {x, y}], Total [#〚1〛] ⩵ 2 &], {x, y}];

rrl = RandomReal [{-5, 5}, 3].{x, y, 1};

sv = NSolveValues [mf ⩵ 0 && RandomReal [{-1, 1}, 3].{x, y, 1} ⩵ 0, {x, y}, Complexes ];

{Append [sv〚1〛, 0], Append [sv〚2〛, 0]}];

In[  ]:= flt[p_, A_] := TransformationFunction [A][p]
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In[  ]:= FLTC2 [f_, A_, x_, y_] := Module [{fh, gh, AI, B, d, z},

fh = Expand [z^2 (f /. {x → x / z, y → y / z})];

AI = Inverse [A];

B = AI.{x, y, z};

gh = N[Expand [fh /. Thread [{x, y, z} → B]]];

Chop [gh /. {z → 1}, 1*^-10 ]

];

In Section  3.1  of my  Plane  Curve  Book  there  is a global  function  tLine which  finds  the  tangent  line  to a 

curve  at a point  p on  curve  f . We  change  the  name  for  convenience  and  add  it to our  global  functions.

In[  ]:= tangentLine2D [f_, p_, x_, y_] := line2D [p, {D[f, y], -D[f, x], 0} /. Thread [{x, y} → p], x, y]

We  now  note  that  this  works  for  complex  conics.   Here  is an example

In[  ]:= Clear [f]

f = (.2 + ⅈ) x^2 - (3 + 8.32 ⅈ) x y + (4 - 2 ⅈ) y^2 + ⅈ x - 3 y + 4 - 5 ⅈ
Out[  ]= (4 - 5 ⅈ) + ⅈ x + (0.2 + 1. ⅈ) x2 - 3 y - (3. + 8.32 ⅈ) x y + (4 - 2 ⅈ) y2

A point  on  this  conic  is 

In[  ]:= pf = {1, -0.007577844391223804` - 0.42500676635061163` ⅈ}
f /. Thread [{x, y} → pf]

Out[  ]= {1, -0.00757784 - 0.425007 ⅈ}
Out[  ]= 0. + 4.44089 × 10-16 ⅈ

In[  ]:= Cf = cTransform2D [f, pf, x, y]

Out[  ]= {{-0.177415 - 0.334953 ⅈ, 0.447326 - 0.484563 ⅈ, 0.386747 + 0.521398 ⅈ},
{0.677179 , -0.00513155 - 0.287805 ⅈ, 0.677179 },

{-0.16655 + 0.232069 ⅈ, -0.415163 - 0.625353 ⅈ, 0.429183 - 0.413255 ⅈ}}
First  note  this  sends  point  pf  to {0,1,0}.   We  use  the  extended  flt  function

In[  ]:= Chop [fltiMD [pf, Cf]]

Out[  ]= {0, 1.23208 + 0.00436189 ⅈ, 0}

which  is equivalent  to {0,  1, 0} in the  projective  plane  by homogeniety.

Now  the  infinite  line  in projective  2-space  is the  line  which  contains  {0,1,0}  and  {1,0,0}.   So  we  can  

indirectly  check  that  the  original  tangent  line  goes  to this  line.

In[  ]:= tlf = tangentLine2D [f, pf, x, y]

Out[  ]= (0.478563 - 1.02142 ⅈ) - (0.137113 - 0.523119 ⅈ) x - (1.15776 + 0.82404 ⅈ) y
Here  tangentLine2D is our  new,  less  confusing  name  for  tline in  our  plane  curves  global  functions,  this  

is in the  current  GlobalFunctionsNS.nb.
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In[  ]:= tangentLine2D [f_, p_, x_, y_] := line2D [p, {D[f, y], -D[f, x], 0} /. Thread [{x, y} → p], x, y]

Our  check  is to show  that  the  point  {1,0,0}  of the  infinite  line  is in the  image  of a point  of tlf via  the  Trans 
formationFunction determined  by Cf.

In[  ]:=

In[  ]:= jf = fltiMD [{1, 0, 0}, Inverse [Cf]]

Out[  ]= {-0.577223 - 0.0878878 ⅈ, -0.188995 - 0.998123 ⅈ}
In[  ]:= tlf /. Thread [{x, y} → jf]

Out[  ]= 4.44089 × 10-16
- 6.66134 × 10-16 ⅈ

which  does  the  trick  .

5.4.2  The normal  form  for a conic  -- Real  Example

The  normal  form  of a conic  will  be  the  parabola   y = x2.  Consider,  for  purposes  of replication,  the  

pseudo  random   integer  conic

In[495]:= conic1 := 1 + 10 x - 2 x2 - 2 y + 8 x y + y2

We  can  find  a real  point  by  using  our  plot  to estimate  a point  we  would  like  to use  from  this  plot  and  

finding  the  closest  point  actually  on  the  conic.   Thus  we  pick

In[496]:= c1p = {1.0259093563540405` , -3.7953394709624946` };

In[  ]:= conic1 /. Thread [{x, y} → c1p]

Out[  ]= 0.

In[  ]:= Show [ContourPlot [conic1 ⩵ 0, {x, -5, 5}, {y, -5, 5}, ImageSize → Small ],

Graphics [{Red, PointSize [.05], Point [c1p]}]]

Out[  ]=

-4 -2 0 2 4

-4

-2

0

2
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We  now  apply  the  cTransform  .

In[  ]:= Ac1 = cTransform2D [conic1, c1p, x, y]

Out[  ]= {{0.578058 , 0.350419 , 0.736923 },

{0.25289, -0.935565 , 0.246504 }, {-0.775819 , -0.0438672 , 0.629429 }}
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To see  what  we  get  we  apply  FLT.

In[  ]:= f1 = FLT3D [{conic1 }, Ac1, {x, y}]〚1〛
Out[  ]= -5.36143 - 2.14214 x + 5.36143 x2 + 7.77378 y

In[  ]:= ContourPlot [f1 ⩵ 0, {x, -3, 3}, {y, -4, 2}, ImageSize → Small ]

Out[  ]=

-3 -2 -1 0 1 2 3
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So we  already  have  a conic  with  vertical  axis    We  have  to get  rid  of the  linear  part,   move  the  vertex  of 

this  parabola  to the  origin  and  make  the  coefficients  of x ^ 2 and  y negatives.   Using  the  trick  we  learned  

in Chapter  2 rather  than  the  method  of Section  7.3  in the  Plane  Curves  Book,  a transform  with  matrix  

In[  ]:= S1 = {{1, 0, a}, {0, b, c}, {0, 0, 1}}

Out[  ]= {{1, 0, {9.35, -17.12 }}, {0, {3.06681, 1.72956 }, c}, {0, 0, 1}}

should  do  the  trick  .

In[  ]:= f2 = FLT3D [{f1}, S1, {x, y}]〚1〛
MatrixRank : Argument {{1, 0, {9.35 , -17.12 }}, {0, {3.06681 , 1.72956 }, c}, {0, 0, 1}} at position 1 is not a

non -empty rectangular matrix .

Inverse : Argument {{1, 0, {9.35 , -17.12 }}, {0, {3.06681 , 1.72956 }, c}, {0, 0, 1}} at position 1 is not a non -empty

square matrix .

Out[  ]= 5.63164 (Inverse [{{1, 0, {9.35, -17.12 }}, {0, {3.06681, 1.72956 }, c}, {0, 0, 1}}].{x, y, 1})2

We  see  we  want 5.36143 b = -7.77378  to make  the  coefficients  of x2 and  y negatives  so

In[  ]:= bb = -7.7737816319831445` / 5.361426248281447`

Out[  ]= -1.44995

In[  ]:= f3 = f2 /. b → bb

Inverse : Argument {{1, 0, {9.35 , -17.12 }}, {0, -1.44995 , c}, {0, 0, 1}} at position 1 is not a non -empty square

matrix .

Out[  ]= 5.63164 (Inverse [{{1, 0, {9.35, -17.12 }}, {0, -1.44995, c}, {0, 0, 1}}].{x, y, 1})2

Now  to get  rid  of the  linear  part  we  need  -2.14214  xc a x = 0

In[  ]:= aa = -2.14214 / 10.7229

Out[  ]= -0.199772
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In[  ]:= f4 = f3 /. a → aa

Out[  ]= 5.63164 (0.199772 + 1. x)2, 5.63164 (0. + 0.689681 c - 0.689681 y)2, 5.63164 
And  finally  we  can  get  rid  of the  constant  part  by

In[  ]:= cc = 5.575396993314872` / 5.361426248281447`

Out[  ]= 1.03991

In[  ]:= f5 = f4 /. c → cc

Out[  ]= 5.63164 (0.199772 + 1. x)2, 5.63164 (0.717205 - 0.689681 y)2, 5.63164 
So we  arrive  at our  conical  form

In[  ]:= Chop [Expand [f5 / 5.361426248281447` ], 10^-5]

Out[  ]= 0.0419205 + 0.419682 x + 1.0504 x2, 0.540308 - 1.03915 y + 0.499633 y2, 1.0504 
Note  if 

In[  ]:= S2 = S1 /. Thread [{a, b, c} → {aa, bb, cc}]

Out[  ]= {{1, 0, -0.199772 }, {0, -1.44995, 1.03991 }, {0, 0, 1}}

In[  ]:= f6 = FLT3D [{conic1 }, S2.Ac1, {x, y}]〚1〛
Out[  ]= -7.08471 × 10-6 x + 5.36143 x2 - 5.36143 y

So if

In[  ]:= A1 = S2.Ac1

Out[  ]= {{0.733046 , 0.359182 , 0.61118 },

{-1.17346, 1.3109, 0.297132 }, {-0.775819 , -0.0438672 , 0.629429 }}

In[  ]:= Chop Expand FLT3D [{conic1 }, A1, {x, y}]〚1〛  5.361426248281447` , 1.*^-5 
Out[  ]= 1. x2 - 1. y

showing  that  the  Transformation  Function  with  matrix  Ac brings  conic1  to canonical  form,  up  to a 

constant  multiple.

Following  this  example  we  can  write  down  a general  procedure.   Note  that  this  uses  a random  transfor -

mation  so it will  return  a different  transformation  function  each  run.   You  should  save  the  result  with  a 

unique  name  for  future  use  rather  than  re-run  this  function  when  working  with  the  same  curve.   This  

has  a self  check  feature  so the  comment  should  give  a normal  form    c x^2  -c y for  some  complex  non-

zero  number.   If this  is not  correct  or there  is an error  message  then  re-run  the  function  to get  a differ -

ent  random  transformation.
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normalForm4Conic [ff_, pp_, x_, y_] := Module {f, g, h, A, B, h0,

h1, h2, h3, h4, h5, cfa, aa, bb, cc, cps, rm, p, S, S2, srm, a, b, c},

rm = RandomReal [{-1, 1}, {3, 3}];

f = FLTC2 [ff, rm, x, y];

p = flt[pp, rm];

If[Abs[f /. Thread [{x, y} → p]] > 1.*^-11 , Echo ["p not accurate point"];

Abort []];

A = cTransform2 [f, p, x, y];

g = FLTC2 [f, A, x, y];

S = {{1, 0, a}, {0, b, c}, {0, 0, 1}};

h = FLTC2 [g, S, x, y];

h1 = Expand [b h];

bb = -Coefficient [h1, y] / Coefficient [h1, b x^2];

h2 = h1 /. {b → bb};

cfa = Coefficient [h2, x];

aa = -cfa〚1〛  Coefficient [cfa, a];

h3 = h2 /. a → -cfa〚1〛  Coefficient [cfa, a];
cc := -h3〚1〛  Coefficient [h3, c];

S2 = S /. Thread [{a, b, c} → {aa, bb, cc}];

B = S2.A.rm;

Echo [Chop [FLTC2 [ff, B, x, y], 1.*^-8 ], "Normal Form is "];

B

Applying  to our  previous  example

In[497]:= normalForm4Conic [conic1, c1p, x, y]

» Normal Form is 3.10867 x2 - 3.10867 y

Out[497]= {{-0.636665 , -0.453268 , -1.06714 },

{-1.50554, 2.95103, 1.44589 }, {-0.696565 , -0.039386 , 0.56513 }}

Note  rather  than  give  normal  form   y = x2 it gives  a multiple  of that.   This  is because  FLT3D  works  only  

up to a constant.   

If one  runs  a real  conic  but  with  a complex  solution  one  will  get  a complex  transformation.   

In[499]:= B = normalForm4Conic [x^2 + y^2 - 1, {Sqrt [2], - ⅈ}, x, y]

» Normal Form is (1.27771 - 1.92135 ⅈ) x2 - (1.27771 - 1.92135 ⅈ) y
Out[499]= {{-0.507268 - 0.383603 ⅈ, -0.681544 + 0.138805 ⅈ, 0.578581 - 0.139048 ⅈ},

{0.317734 + 0.392038 ⅈ, -0.343997 - 3.13481 ⅈ, 0.382171 + 3.14761 ⅈ},
{-0.118401 + 0.235166 ⅈ, 0.166288 + 0.0837225 ⅈ, 0.0837225 - 0.166288 ⅈ}}

In[501]:= (y - x^2) /. Thread [{x, y} → fltMD [{.6, -.8}, B]]

Out[501]= -1.06581 × 10-14
- 1.06581 × 10-14 ⅈ
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 5.4.6  A complex  example

For  our  second  example  we  start  with  a pseudo  - random  complex  integer  example  .  Here  we  leave  off  

the  linear  part  as it plays  no  essential  role  as complex  conics  are  not  divided  into  parabolas,  hyperbolas  

and  ellipses  as real  conics  are.

In[502]:= conic2 = -1 + (4 + ⅈ) x^2 - (6 - 5 ⅈ) x y - (3 - 2 ⅈ) y^2

Out[502]= -1 + (4 + ⅈ) x2 - (6 - 5 ⅈ) x y - (3 - 2 ⅈ) y2
In[503]:= sol1 = NSolveValues [conic2 ⩵ 0, {x, y}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
92291 x

87992

-
121001 y

175984

== 1.

Out[503]= {{1.5718 - 0.128716 ⅈ, -3.85212 + 0.19635 ⅈ}, {-0.822423 + 0.108657 ⅈ, -0.199829 - 0.165752 ⅈ}}
Mathematica Note:   This  is the  same  pseudo-random  value  I got  earlier  using  Mathematica   12.3  

instead  of 13.1.   In some  ways  this  is comforting,  but  as we  saw  earlier  in this  chapter  maybe  not  a good  

thing.   So  our  random  point  is still

In[504]:= p2 = sol1〚1〛
Out[504]= {1.5718 - 0.128716 ⅈ, -3.85212 + 0.19635 ⅈ}

Our  algorithm  normalForm4Conic works  here.

In[505]:= K = normalForm4Conic [conic2, p2, x, y]

» Normal Form is (- 7.58234 - 11.9463 ⅈ) x2 + (7.58234 + 11.9463 ⅈ) y
Out[505]= {{0.587288 - 0.87296 ⅈ, 0.278298 - 0.388537 ⅈ, 0.185011 - 0.103622 ⅈ},

{1.39576 - 5.06059 ⅈ, -0.826902 + 0.0268567 ⅈ, 1.11321 - 1.83181 ⅈ},
{0.214735 - 0.099931 ⅈ, 0.0834036 - 0.0438464 ⅈ, -0.0119869 - 0.000566177 ⅈ}}

We  can  use  this  to find  many  points  on  conic  2 simply  by applying  our  transformation  function  to easily  

found  points  on  the  parabola  y = x2

In[506]:= q1 = fltMD [{3, 9}, Inverse [K]]

Out[506]= {-0.260772 - 0.278993 ⅈ, 0.211966 - 0.318517 ⅈ}
In[507]:= conic2 /. Thread [{x, y} → q1]

Out[507]= 0. - 4.66294 × 10-15 ⅈ
We  can  use  complex  numbers  as well

In[508]:= q2 = fltMD [{.357 - .218 ⅈ, (.357 - .218 ⅈ)^2}, Inverse [K]]

Out[508]= {-0.364464 - 0.0644493 ⅈ, 0.346904 - 0.0957222 ⅈ}
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In[509]:= conic2 /. Thread [{x, y} → q2]

Out[509]= -3.33067 × 10-15
- 3.27516 × 10-15 ⅈ

5.5 Normal  Form  for Smooth  Cubics

In[  ]:= Clear [g1, g2, g3]

In section  7.5  of the  Plane  Curve  Book  I gave  an algorithm  for  Weierstrass  Normal  form  for  a smooth  

plane  cubic.   Unfortunately  I was  thinking  only  of numerical  cubics  and  did  not  worry  about  form  of the  

coefficients.   However  in this  Chapter  we  need  the  correct   form   y ^ 2 = 4 x3 - g2 x - g3  with  coefficient  

of x3 being  4.

Here  is a correct  function,  it takes  a smooth  cubic  f  and  inflection  point  ipf on f and  it returns  as a first  

component  the  normal  form  and  the  second  component  gives  a transformation  matrix  taking  a point  

on f  to a point  on  the  normal  form.   Note  this  differs  from  weierstrassNormalForm2D in my  Plane  Curve  

Book  and  earlier  versions  of GlobalFunctions.nb

In[  ]:= weierstrassNormalForm [f_, ip_, x_, y_] :=

Module [{B1, B2, B3, B4, B5, B, f1, f2, f3, f4, k, cy2},

B1 = cTransform2D [f, ip, x, y];

f1 = Chop [FLT2D [f, B1, x, y], 1.*^-9 ];

cy2 = Coefficient [f1, y^2];

If[Length [cy2] > 0, Print ["Sorry, this example requires special handling "];

Abort []];

k = Expand [Coefficient [f1, y] / cy2 / 2 + y];

B2 = {{1, 0, 0}, {Coefficient [k, x], 1, k〚1〛}, {0, 0, 1}};

f2 = FLT2D [f1, B2, x, y];

B3 = homothety2D [CubeRoot [- (Coefficient [f2, x^3] / Coefficient [f2, y^2])], 1];

f3 = FLT2D [f2, B3, x, y];

f3 = -Expand [f3 / Coefficient [f3, y^2]];

B4 = {{1, 0, Coefficient [f3, x^2] / 3}, {0, 1, 0}, {0, 0, 1}};

B5 = {{1, 0, 0}, {0, 2, 0}, {0, 0, 1}};

f4 = FLT2D [f3, B5.B4, x, y];

B = B5.B4.B3.B2.B1;

{Expand [4 f4], B}];

For  example,  let

In[  ]:= f = y^2 - x^3 - x^2 + 2 x + 1 - 2 x y;

We  find  inflection  points  by  allInflectionPoints2D  in Section  70.1  of our  GlobalFunctionsNS.nb.   

In[  ]:= aip = allInflectionPoints2D [f, x, y]

Out[  ]= {{0., 1., 0.}, {1.73471, 4.33647 }, {1.73471, -0.867047 }}
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In[  ]:= ip = aip〚3〛
Out[  ]= {1.73471, -0.867047 }

In[  ]:= {wfn, Afn} = weierstrassNormalForm [f, ip, x, y]

Out[  ]= 0.193765 - 1.86508 x + 4. x3 - 1. y2, {{0.152783 , -0.316429 , -0.539393 },

{1.54482, -0.419326 , 1.32055 }, {-0.593323 , -0.352319 , 0.723767 }}
In[  ]:= ip2 = aip〚2〛

Out[  ]= {1.73471, 4.33647 }

Note  that  the  transformation  function  takes  ip to  a point  on  wfn

In[  ]:= iq = fltMD [ip2, Afn]

wfn /. Thread [{x, y} → iq]

Out[  ]= {0.898131 , -1.19019 }

Out[  ]= -8.48255 × 10-12

Caution  : remember  the  inflection  point  ip goes  to an infinite  point  under  this  transformation.

In[  ]:= Show [ContourPlot [{f ⩵ 0, wfn ⩵ 0}, {x, -5, 5}, {y, -5, 5}],

Graphics [{PointSize [.02], {Red, Point [ip2]}, {Green, Point [iq]}}]]

Out[  ]=

-4 -2 0 2 4

-4

-2

0

2

4

5.6 Topology  of the Complex  Solution  Set for smooth  plane  Conics

In these  last  two  subsections  we  will  explore  complex  curves.   I briefly  mention  at the  end  of Chapter  5 

of my  Plane  Curve  Book  that  complex  solutions  of curves  form  compact  orientable  surfaces.  However  

the  final  pictures  there  are  wrong  and  I can  finally  correct  them.    In these  last  sections  we  will  show,  in 

the  case  of smooth  conic  and  cubic  how  to explicitly  give  invertible  continuous  maps  from  the  complex  

solution  set  to a sphere  or torus.   In these  sections  we  will  think  of the  complex  solution  space  is up 

while  the  surface  is down.

5.6.1  The Parabola
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My viewpoint  in this  note  is that  the  complex  solution  space  is up and  we  will  map  down to our  target.   

So for  each  case  we  will  define  a  down mapping  and  an inverse  up mapping.

We  first  do  the  simple  case  of  the  parabola  y = x2.  From  our  earlier  results  in this  book  we  will  see  that  

using  our  projective  linear  transformations  we  will  able  to then  get  the  general  case.

 This  is quite  simple  for  the  affine  part  since  every  complex  value  for  x  gives  a unique  solution  .  So  it is 

immediate  that  the  affine  complex  solution  space  is simply  the  complex  plane.   But  to get  the  correct  

infinite  part  we  will  instead  use  the  equivalent  affine  space  the  paraboloid   z = x2 + y2.

We  need  the  Mathematica  built  in functions  ReIm  and Abs.  The  first  changes  a specific  complex  

number  α + β ⅈ to the  real  ordered  pair  {α, β}.  It may  do  some  expansion:

In[  ]:= ReIm [(2 + 3 I)^2]

Out[  ]= {-5, 12}

The  second   is just  the  absolute  value   α2 + β2 .

In[  ]:= Abs[4 - 5 I]

Out[  ]= 41

So our  up  and  down  functions  are  defined  simply  by

In[  ]:= Pdown [{u_, v_}] := Append [ReIm [u], Abs[v]]

Pup[{x_, y_, z_}] := {x + I y, (x + I y)^2}

where   u, v  are  any  complex  numbers  and  x, y, z  are  real  numbers  satisfying  z = x2 + y2.  To  illustrate  

that  these  are  inverse  functions  between  the  correct  domains

In[  ]:= pu1 = RandomComplex [{-10 - I, 10 + I}];

pu = pu1, pu12
pd = Pdown [pu]

(x^2 + y^2 - z) /. Thread [{x, y, z} → pd]

Pup[pd]

Out[  ]= {8.83185 - 0.426785 ⅈ, 77.8195 - 7.53861 ⅈ}
Out[  ]= {8.83185, -0.426785 , 78.1838 }

Out[  ]= 0.

Out[  ]= {8.83185 - 0.426785 ⅈ, 77.8195 - 7.53861 ⅈ}

249   | SurfaceStoryPartIII.nb



In[  ]:= qd1 = RandomReal [{-10, 10}, 2];

qd = Append [qd1, qd1〚1〛^2 + qd1〚2〛^2]
qu = Pup[qd]

(y - x^2) /. Thread [{x, y} → qu]

Pdown [qu]

Out[  ]= {-9.64215, 8.32047, 162.201 }

Out[  ]= {-9.64215 + 8.32047 ⅈ, 23.7408 - 160.454 ⅈ}
Out[  ]= 0. + 0. ⅈ
Out[  ]= {-9.64215, 8.32047, 162.201 }

The  observant  reader  may  have  noticed  that  the  third  coordinate  z is not  used  in the  definition  of Pup.  

But  this  is because  z is assumed  be already  a function  of x  and  y.  The  function  Pup  will  still  give  a 

result  even  if {x, y, z}  is not  in the  domain  of Pup and  this  result  is in the  domain  of Pdown this  will  

come  in handy  later   to refine  points  in the  domain  of Pdown.

In[  ]:= Pdown [Pup[{2, 3, 11}]]

Out[  ]= {2, 3, 13}

We  still  must  consider  the  infinite  points.   As  mentioned  in my  Plane  Curve   book  and  Section  1.10  of this  

book,   it is enough  to find   zeros  of the  top  form  where  the  equation  is of the  form  f = 0.  The  top  form  

for  x ^ 2 - y = 0 is x2.  So  the  only  infinite  complex  solution  of  x ^ 2 - y = 0 is {0, 1, 0}  in homogeneous  

coordinates.   But  the  top  form  for  the  paraboloid  is x2 + y2 and  the  only  real  infinite  solution  is 

{0, 0, 1, 0}.  So  these  two  will  map  to each  other.   One  just  needs  to check  continuity  in the  homoge -

neous  space.   By  example

In[  ]:= Pdown [{100 + 100 I, (100 + 100 I)^2}]

Out[  ]= {100, 100, 20 000 }

But  by homogeneity   this  is {100,100,20000}/20000  which  is essentially  the  homogeneous  point   {0,0,1,0}

In[  ]:= Pup[{100, 100, 10 000 }]

Out[  ]= {100 + 100 ⅈ, 20 000 ⅈ}
which  is close  to the  homogeneous  point  {0,1,0}.   A complete  proof  of continuity  is le�  to the  reader.

So now  we  can  conclude  that  the  complex  projective  solution  space  of  the  parabola  y = x2 is topologi -

cally  the  real  projective  space  of the  paraboloid.   Here  is an illustration  where  the  points  on  the  

parabola  are  the  points  Pdown of the  correspondingly  named  points  of the  solution  set  on  the  right.
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Out[  ]=

a = {0, 0}

b = {1, 1}

c = {2, 4}

d ={2.2 + 1.2 ⅈ, 3.4 + 5.28 ⅈ}
e = {3.07281 - 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
f = {-3.07281 + 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
g = {1 + 2 ⅈ, -3 + 4 ⅈ}
h = {-1. + 2.5 ⅈ, -5.25 - 5. ⅈ}
k = {2.5 + 1.7 ⅈ, 3.36 + 8.5 ⅈ}

From  our  observation  in Section  1 that  the  projective  paraboloid  is algebraically  equivalent,  hence  

topologically  equivalent,   to the  sphere  we  can  conclude  that  the  complex  solution  space  of the  

parabola  is topologically  equivalent  to the  sphere.   But  we  can  do  better  since  we  know  the  algebraic  

equivalence  and  describe  the  maps.   Recall  the  global  function  defined  in Section  2.1

In[  ]:= PB2SP = paraboloid2sphere

Out[  ]= 0, 0,
1

2
, -

1

2
, {1, 0, 0, 0}, {0, 1, 0, 0}, 0, 0,

1

2
,
1

2


In[  ]:= PSdown [{u_, v_}] := TransformationFunction [PB2SP ][Pdown [{u, v}]]

PSup [{x_, y_, z_}] := Pup[TransformationFunction [Inverse [PB2SP ]][{x, y, z}]]

Illustrating  with  simple  examples

In[  ]:= PSdown [{3 I, 9}]

Out[  ]=  4
5
, 0,

3

5


In[  ]:= PSup [{4 / 5, 0, 3 / 5}]

Out[  ]= {3 ⅈ, -9}

In[  ]:= PSup [{2 / 3, 1 / 3, 2 / 3}]

Out[  ]= {1 + 2 ⅈ, -3 + 4 ⅈ}
In[  ]:= PSdown [{1 + 2 ⅈ, -3 + 4 ⅈ}]

Out[  ]=  2
3
,
1

3
,
2

3


In[  ]:= Note  that  

In[  ]:= PSdown [{0, 0}]

Out[  ]= {-1, 0, 0}
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In[  ]:= N[PSdown [{200, 40 000 }]]

Out[  ]= {0.99995, 0.00999975 , 0.}

suggests  that  the  infinite  point  of the  parabola  goes  to {1,  0, 0} of the  sphere.   In fact,  note  that  all  real  

points  on  the  parabola  go to the  equator  of the  sphere  with  solution  {0,0}  at {-1, 0, 0} in back  of this  

sphere.

Illustrating  by graphic

Out[  ]=  ,

a = {0, 0}

b = {8, 64}

c = {3, 9}

d ={-3, 9}

e = {-7, 49}

i infinite point

f = {ⅈ, -1}

g = {- ⅈ, 1}

h = {0.2 + 6. ⅈ, -35.96 + 2.4 ⅈ}
k = {-0.2 - 6. ⅈ, -35.96 + 2.4 ⅈ}



5.6.2 The Circle

Now  it is easy  to write  down  the  mapping  from  the  complex  solution  set  of x ^ 2 + y ^ 2 = 1 using  the  

global  transformation  P2C  in Section  1.

In[  ]:= P2C = p2cTransform2D

Out[  ]= {{1, 0, 0}, {0, -0.5, 0.5}, {0, -0.5, -0.5}}

In[  ]:= Cdown [{u_, v_}] := PSdown [TransformationFunction [Inverse [P2C]][{u, v}]]

Cup[{x_, y_, z_}] := TransformationFunction [P2C][PSup [{x, y, z}]]

The  specified  domain  for Cdown is the  complex  solution  set  of the  circle  while  the  domain  for   Cup is  

the  real  Sphere.  If these  functions  are  called  with  other  arguments  one  may  still  get  a result  but  it may  

not  be  in the  other  domain  and  these  functions  may  not  be  invertible  for  these  values.

We  check,  using  first  the  fact  that  the  complex  trigonometric  functions  sin  and  cosine  also  satisfy  

sin [θ]2 + cos [θ]2 = 1 for  any  complex  θ .
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In[  ]:= θ = RandomComplex [{-8 - I, 8 + 8 I}]

(x^2 + y^2 - 1) /. Thread [{x, y} → {Cos[θ], Sin[θ]}]
p = {Cos[θ], Sin[θ]}
q = Cdown [p]

(x^2 + y^2 + z^2 - 1) /. Thread [{x, y, z} → q]

p - Cup[q]

Out[  ]= 3.5443 + 1.81567 ⅈ
Out[  ]= 1.77636 × 10-15

+ 8.88178 × 10-16 ⅈ
Out[  ]= {-2.90166 + 1.17228 ⅈ, -1.23606 - 2.75195 ⅈ}
Out[  ]= {-0.124258 , 0.291698 , -0.948405 }

Out[  ]= 0.

Out[  ]= -8.88178 × 10-16
+ 0. ⅈ, 0. - 8.88178 × 10-16 ⅈ

Next  we  check  using  the  traditional  trigonometric  parameterizations  of the   real  sphere  

In[  ]:= {s, t} = RandomReal [{-Pi, Pi}, 2];

pd = {Sin[s] Cos[t], Sin[s] Sin[t], Cos[s]}

qu = Cup[pd]

(x^2 + y^2 - 1) /. Thread [{x, y} → qu]

Cdown [qu]

Out[  ]= {-0.322523 , 0.706684 , -0.629743 }

Out[  ]= {-1.17112 + 0.33659 ⅈ, -0.534488 - 0.737508 ⅈ}
Out[  ]= 5.55112 × 10-17

+ 1.11022 × 10-16 ⅈ
Out[  ]= {-0.322523 , 0.706684 , -0.629743 }

We  see  that  these  functions  on  the  specified  domains  give  results  in the  required  range  and  are  

inverses.

If we  take  a real  solution  of the  circle  and  apply  Cdown we get  a point  on  the  equator  of the  sphere,  that  

is z = 0.

In[  ]:= t0 = RandomReal [{-Pi, Pi}];

Cdown [{Cos[t0], Sin[t0]} ]

Out[  ]= {0.74778, -0.663946 , 0.}

Some  other  values  are
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In[  ]:= Cdown [{1, 0}]

Cdown [{-1, 0}]

Cdown [{0, -1}]

Out[  ]= {0., -1., 0.}

Out[  ]= {0., 1., 0.}

Out[  ]= {-1., 0., 0.}

But  note  that  Cdown  will  not  work  correctly  on  the  point  {0,1}  due  to a zero  denominator  in the  calcula -

tion.  There  is also  a problem  with  Cup  at {1, 0, 0}.  A work  around  is 

In[  ]:= Limit [Cdown [{Cos[t], Sin[t]}], t → Pi / 2]

Limit [Cup[{Cos[t], Sin[t], 0}], t → 0]

Out[  ]= {1., 0., 0.}

Out[  ]= {0., 1.}

While  the  real  solution  set  of x2 + y2 = 1  is bounded  the  complex  solution  set  is not.   To  find  infinite  

points  we  take  the  maximal  form  which  here  is already  homogeneous  and  solve.   But  note  that  

x2 + y2 = (x + ⅈ y) (x - ⅈy) which  has  two  complex  solutions  x = -ⅈ y or x = ⅈ y. Normalizing  at y = 1 we  get  

solutions   {-ⅈ , 1} or  {ⅈ, 1}.  So,  in homogeneous  coordinates  there  are  two  infinite  points  {ⅈ,1,0}  or 

{-ⅈ, 1, 0}.   Unfortunately  our  formula  only  works  for  affine  points  but  note

In[  ]:= (x^2 + y^2 - 1) /. Thread [{x, y} → {t ⅈ, Sqrt [1 - (t ⅈ)^2]}]
Out[  ]= 0

so these  points  are  in our  complex  solution  set  for  all  t.  Then  our  points  map  to sphere  points  by 

continuity

In[  ]:= Limit [ Cdown [{t ⅈ, Sqrt [1 - (t ⅈ)^2]}], t → ∞]

Limit [ Cdown [{t ⅈ, Sqrt [1 - (t ⅈ)^2]}], t → -∞]

Out[  ]= {0., 0., 1.}

Out[  ]= {0., 0., -1.}

Here  is an illustration  of selected  points  on  the  complex  circle  and  their  images  in the  sphere.
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In[  ]:=

The  three  curves  in the  sphere,  x = 0, y = 0, z = 0  separate  the  sphere  into  8 connected  regions.   In this  

example,  since  there  is a strong  relationship  between  the  sphere  and  the  circle  which  is embedded  as 

the  equator  we  can  identify  the  regions  with  certain  sets  of solutions.   For  example  the  region  contain -

ing  the  solution  f will  contain  all  solutions  of the  form  {α + β ⅈ , γ - δ ⅈ } for  α ,β , γ, δ positive  real  numbers.  

It should  be noted  that  rotations  and  reflections  of the  sphere  take  each  of these  regions  to another.   

For  example  we  can  map  the  point  f to the  point  g by  

In[  ]:= Cup[TransformationFunction [{{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}][

Cdown [{0.866025 + .5 I, 0.866025 - .5 I}]]]

Out[  ]= {0.866025 - 0.499999 ⅈ, -0.866025 - 0.499999 ⅈ}

5.6.3 The Hyperbola

The  first  example  were  standard  real  conics   we  now  look  at one  representative  of an arbitrary  real  

conic.   So  that  my  work  can  be replicated  we  use  integer  coefficients.

In[  ]:= h1 = 1 + 10 x - 2 x2 - 2 y + 8 x y + y2;

This  gives  a hyperbola  which  contains,  among  many  other  points,   the  point  ph:

In[  ]:= ph = {1.0259094757506706` , -3.795341582563674` };

In[  ]:= Show [ContourPlot [h1 ⩵ 0, {x, -5, 5}, {y, -5, 5}, ContourStyle → Blue, ImageSize → Tiny ],

Graphics [{Red, PointSize [.07], Point [ph]}]]

Out[  ]=

-4 -2 0 2 4

-4

-2

0

2

4

In Section  7.3  of my  Plane  Curve  Book  I show  how  to transform  any  plane  conic  to a parabola.   In this  

case  I know  the  transform  so will  not  go through  the  steps.   The  transform  from  this  hyperbola  to the  

parabola  is
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In[  ]:= H2P = {{1.`, 1.`, 2.`}, {3.`, 0.`, -3.`}, {1.`, -2.`, -1.`}};

To check  a pseudo  -random  point

In[  ]:= q = TransformationFunction [H2P][ph]

Out[  ]= {-0.101021 , 0.0102051 }

In[  ]:= (y - x^2) /. Thread [{x, y} → q]

Out[  ]= 1.04083 × 10-17

Conversely

In[  ]:= rr = RandomReal [{-5, 5}]

Out[  ]= 1.52491

In[  ]:= rh = TransformationFunction [Inverse [H2P]][{rr, rr^2}]

Out[  ]= {3.69689, -0.39122 }

In[  ]:= h1 /. Thread [{x, y} → rh]

Out[  ]= -1.42109 × 10-14

Now  we  can  write  down  the  maps  from  the  complex  solution  space  of h1  = 0 to and  from  the  real  

sphere.

In[  ]:= Hdown [{x_, y_}] := PSdown [TransformationFunction [H2P][{x, y}]]

Hup[{x_, y_, z_}] := TransformationFunction [Inverse [H2P]][PSup [{x, y, z}]]

For  the  curious  these  functions  are  not  terribly  complicated

In[  ]:= Hdown [{x, y}]

Out[  ]=  -
1

2
+

1

2
Abs -3.+3. x

-1.+1. x-2. y


1

2
+

1

2
Abs -3.+3. x

-1.+1. x-2. y
 ,

Re 2. +1. x+1. y

-1.+1. x-2. y


1

2
+

1

2
Abs -3.+3. x

-1.+1. x-2. y
 ,

Im 2. +1. x+1. y

-1.+1. x-2. y


1

2
+

1

2
Abs -3.+3. x

-1.+1. x-2. y
 

In[  ]:= Hup[{x, y, z}]

Out[  ]=  0.166667 + 0.333333  y

1-x
+

ⅈ z
1-x

 + 0.166667  y

1-x
+

ⅈ z
1-x

2
0.166667 + 0.333333  y

1-x
+

ⅈ z
1-x

 - 0.166667  y

1-x
+

ⅈ z
1-x

2 ,

-0.5 - 9.25186 × 10-18  y

1-x
+

ⅈ z
1-x

 + 0.166667  y

1-x
+

ⅈ z
1-x

2
0.166667 + 0.333333  y

1-x
+

ⅈ z
1-x

 - 0.166667  y

1-x
+

ⅈ z
1-x

2 

which  would  look  worse  if our  coefficients  were  not  rational  numbers.   Note  the  built  in function  Abs  is 

given  by 

Abs [u + I v] = Sqrt [u ^ 2 + v ^ 2]  so square  roots  are  involved.

Once  again  we  see  that  real  solutions  of h1 = 0 go to the  equator.   Recall  our  random  point  on  h1 was  rh
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In[  ]:= Hdown [rh]

Out[  ]= {0.39856, 0.917142 , 0.}

To find  in the  infinite  points  we  use  the  method  given  in Section  3.3  of my  Plane  Curve  book.

In[  ]:= maxFormh1 = -2 x^2 + 8 x y + y^2

Out[  ]= -2 x2 + 8 x y + y2

In[  ]:= Reduce [maxFormh1 ⩵ 0, {x, y}]

Out[  ]= y ⩵ -4 x - 3 2 x || y ⩵ -4 x + 3 2 x

We  can  write  down  our  infinite  points  

In[  ]:= N[{1, -4 - 3 Sqrt [2], 0} ]

N[{1, -4 + 3 Sqrt [2], 0}]

Out[  ]= {1., -8.24264, 0.}

Out[  ]= {1., 0.242641 , 0.}

As an illustration

In[  ]:= sol4 = NSolveValues [h1 ⩵ 0 && x ⩵ 100, {x, y}]

Out[  ]= {{100., -821.137 }, {100., 23.1374 }}

Writing  these  as homogeneous  points  and  dividing  by 100  we  see  this  is an approximation  of the  infi -

nite  point.

In[  ]:= Evaluate [{{100.`, -821.1374183841087` , 1}, {100.`, 23.137418384108656` , 1}} / 100]

Out[  ]= 1., -8.21137,
1

100
, 1., 0.231374 ,

1

100


The  coordinates  on  the  sphere  will  be  approximately

In[  ]:= ihd = Hdown [sol4〚1〛]
hhd = Hdown [sol4〚2〛]

Out[  ]= {-0.708577 , -0.705633 , 0.}

Out[  ]= {0.698477 , 0.715633 , 0.}

To find  Hup[{1,  0, 0} ] we  need  to take  a limit

In[  ]:= Clear [t]

In[  ]:= Limit [Hup[{t, Sqrt [1 - t^2], 0}], t → 1]

Out[  ]= {-1., -1.}

Here  is the  graphic  showing  this  data  and  other  selected  points.   The  arrows  on  the  plane  graph  show  

the  direction  of travel  on  the  real  plane  curve  which  then  is also  on  the  spheres  with  infinite  point  h 

between   a,b  and  infinite  point  i between  c and  d.
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Out[  ]=

b

c

d

a

h

h

i

i
-4 -2 0 2 4

-4

-2

0

2

4

a = {3.30081, -0.511291 }

b = {-2.61344, -1.584 }

c = {-0.212143 , 4}

d = {1., -3.}

e = {-0.3235 + 0.7941 ⅈ, -0.8824 + 0.5294 ⅈ}
f = {1.324 + 0.7941 ⅈ, -1.118 + 0.5294 ⅈ}
g = {-0.2 - 0.0707107 ⅈ, -0.3 - 0.141421 ⅈ}
h infinite point

i infinite point

j = {0.5 + 0.5 ⅈ, -1 + ⅈ}
k = {0.5 - 0.5 ⅈ, -1 - ⅈ}
l = {-0.3235 - 0.7941 ⅈ, -0.8824 - 0.5294 ⅈ}
m = {0.1471 - 0.08824 ⅈ, 0.05882 - 1.235 ⅈ}
n = {0.6803 - 0.1949 ⅈ, -2.014 + 2.944 ⅈ}
o = {0.5 + 0.133975 ⅈ, -1. - 2.73205 ⅈ}

5.6.4   A complex  conic

As our  last  example  we  consider  the  complex  conic  of section   5.4.6  where  we  called  it conic2.   Here  we  

will  call  it just  k.  The  linear  terms  just  shear  the  conic  so we  can  leave  them  off  with  out  destroying  our  

pseudo-randomness.

In[  ]:= k = -1 + (4 + ⅈ) x2 - (6 - 5 ⅈ) x y - (3 - 2 ⅈ) y2;

In 5.4  .6 we  calculated  a transformation  matrix  K taking  this  to normal  form  y = x2 for  reference  we  

repeat  this  here

In[  ]:= K :=

-0.5123539884590109` + 0.9071396873769841` ⅈ -0.40717365502919217` + 0.4894286738610242`

3.855326236452737` - 2.611164128247496` ⅈ -3.4893438886784645` + 7.309745651560146`

0.8220704880423995` - 0.4308659945517181` ⅈ 0.3183638426493982` - 0.18704995801039564`
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In[  ]:= K // MatrixForm

Out[  ]//MatrixForm=

-0.512354 + 0.90714 ⅈ -0.407174 + 0.489429 ⅈ -0.783827 + 0.473494 ⅈ
3.85533 - 2.61116 ⅈ -3.48934 + 7.30975 ⅈ 1.13508 - 1.87453 ⅈ
0.82207 - 0.430866 ⅈ 0.318364 - 0.18705 ⅈ -0.0470254 + 0. ⅈ

Note

In[  ]:= Chop [Expand [FLT3D [{k}, K, {x, y}] / (0.5004363187858398` + 0.9368983792763038` ⅈ)]]
Out[  ]= -1. x2 + 1. y

Our  topological  equivalences  are  from  the  complex  solution  space  of k to the  sphere  are

In[  ]:= Kdown [{u_, v_}] := PSdown [TransformationFunction [K][{u, v}]]

Kup[{x_, y_, z_}] := TransformationFunction [Inverse [K]][PSup [{x, y, z}]]

We  can  find  a solution  point  of k = 0 by

In[  ]:= pk1 = fltMD [{2, 4}, Inverse [K]]

Out[  ]= {-0.396008 - 0.0322832 ⅈ, 0.199918 + 0.0146187 ⅈ}
Check

In[  ]:= k /. Thread [{x, y} → pk1]

Out[  ]= -1.11022 × 10-16
+ 7.21645 × 10-16 ⅈ

In[  ]:= So 

In[  ]:= ps1 = Kdown [pk1]

(x^2 + y^2 + z^2 - 1) /. Thread [{x, y, z} → ps1]

Out[  ]= 0.6, 0.8, -1.77636 × 10-16 
Out[  ]= -4.44089 × 10-16

On the  other  hand  if we  take  a point  on  the  sphere

In[  ]:= ps1 = {1 / 3, 2 / 3, -2 / 3}

Out[  ]=  1
3
,
2

3
, -

2

3


In[  ]:= pk2 = Kup[ps1]

Out[  ]= {-0.397892 - 0.138114 ⅈ, 0.206391 - 0.191069 ⅈ}
In[  ]:= k /. Thread [{x, y} → pk2]

Out[  ]= -3.33067 × 10-16
+ 5.55112 × 10-16 ⅈ

we get  a solution  point  for  k = 0.

We  want  to find  the  infinite  points  of k and  their  image  in the  sphere.   We  notice  k is almost   homoge -

neous,  in fact  kMax is just  k + 1,  so we  solve
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In[  ]:= pinfs1 = NSolveValues [{k + 1, RandomReal [{-10, 10}, 2].{x, y} + 1}, {x, y}]

Out[  ]= {{-0.185944 - 0.0966776 ⅈ, -0.028371 - 0.092407 ⅈ},
{-0.0434693 + 0.0012407 ⅈ, 0.10781 + 0.00118589 ⅈ}}

The  following  are  then  good  estimates  of the  infinite  points  of k

In[  ]:= pinf1a = 2000 pinfs1 〚1〛
pinf1b = 2000 pinfs1 〚2〛

Out[  ]= {-371.889 - 193.355 ⅈ, -56.7419 - 184.814 ⅈ}
Out[  ]= {-86.9385 + 2.4814 ⅈ, 215.621 + 2.37179 ⅈ}

These  go to

In[  ]:= Kdown [pinf1a ]

Kdown [pinf1b ]

Out[  ]= {0.147137 , -0.875366 , 0.460531 }

Out[  ]= {0.998712 , 0.0435125 , -0.0261242 }

We  can  check  for  more  infinite  points  or consistency  of our  estimates  by trying  again

In[  ]:= pinfs2 = NSolveValues [{k + 1, RandomReal [{-10, 10}, 2].{x, y} + 1}, {x, y}]

Out[  ]= {{0.735128 + 0.922918 ⅈ, -0.0655977 + 0.540252 ⅈ},
{0.161756 - 0.00517528 ⅈ, -0.401234 - 0.00302947 ⅈ}}

In[  ]:= pinf2a = 2000 pinfs2 〚1〛
pinf2b = 2000 pinfs2 〚2〛

Out[  ]= {1470.26 + 1845.84 ⅈ, -131.195 + 1080.5 ⅈ}
Out[  ]= {323.512 - 10.3506 ⅈ, -802.469 - 6.05894 ⅈ}

These  go to 

In[  ]:= Kdown [pinf2a ]

Kdown [pinf2b ]

Out[  ]= {0.149228 , -0.874863 , 0.460809 }

Out[  ]= {0.99877, 0.0424832 , -0.0255804 }

These  are  close  enough  for  plotting  purposes,  but  we  can  get  perhaps  slightly  better  taking  the  average

In[  ]:= ik = Kdown [(pinf1a + pinf2a ) / 2]

jk = Kdown [(pinf1b + pinf2b ) / 2]

Out[  ]= {0.149565 , -0.874677 , 0.461054 }

Out[  ]= {0.998791 , 0.0421058 , -0.0253805 }

We  now  would  like  to know  any  real  points  in the  complex  projective  solution  set  of k.  An  interesting  

way  to solve  this  is to note  Mathematica has  some  very  good  very  general  minimization  routines,  
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especially  designed  to work  with  Artificial  Intelligence  so�ware.   We  use  our  trigonometric  parameteriza -

tion  of the  sphere  and  minimize  the  norm  of the  imaginary  part  of Kup  of a point.

In[  ]:= Clear [t, s];

fff := Norm [Im[Kup[{Sin[s] Cos[t], Sin[s] Sin[t], Cos[s]}]]]

One  run  is 

In[  ]:= Timing [Minimize [{fff, -Pi / 2 < s < Pi / 2, -Pi < t < Pi}, {t, s}]]

Out[  ]= 0.644184 , 1.6184 × 10-10, {t → -1.95586, s → -1.36176 }
Note  this  took  my  old   Intel®  Core™  i7-6800K  CPU  @ 3.40GHz  × 12   computer  running  on  Ubuntu  22.04  

with  Mathematica  12.3  less  than  .2 second  to do  this  calculation.  So  one  real  point  of k is

In[  ]:= gk = Chop [Kup[{Sin[s] Cos[t], Sin[s] Sin[t], Cos[s]} /.

{t → -1.9558593848524621` , s → -1.3617638790835194` }], 10^-9]

Out[  ]= {-0.43975, 0.0964036 }

Checking:

In[  ]:= k /. Thread [{x, y} → gk]

Out[  ]= 2.61101 × 10-11
+ 7.32226 × 10-10 ⅈ

Another,  less  interesting  but  more  accurate  way  to  find  real  values  is just  to find  a common  solution  to 

the  real  and  imaginary  parts  .

In[  ]:= ComplexExpand [k]

Out[  ]= -1 + 4 x2 - 6 x y - 3 y2 + ⅈ x2 + 5 x y + 2 y2
In[  ]:= solre = NSolveValues -1 + 4 x2 - 6 x y - 3 y2 ⩵ 0 && x2 + 5 x y + 2 y2 ⩵ 0, {x, y}, Reals 

Out[  ]= {{0.43975, -0.0964036 }, {-0.43975, 0.0964036 }, {0.693569 , -1.58188 }, {-0.693569 , 1.58188 }}

In[  ]:= k /. Thread [{x, y} → solre〚1〛]
Out[  ]= 1.4988 × 10-15

- 4.996 × 10-16 ⅈ
Thus  there  are  4 real  values  in this  solution  set  .

We  can  picture  selected  points  of the  solution  set  and  their  image  on  the  sphere  by 
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Out[  ]=

a = {-0.2446 + 0.01095 ⅈ, 0.09187 + 0.337 ⅈ}
b = {-0.396 - 0.03228 ⅈ, 0.1999 + 0.01462 ⅈ}
c = {-0.3621 - 0.04404 ⅈ, 0.3133 + 0.1008 ⅈ}
d = {-0.1261 + 0.3381 ⅈ, -0.1843 + 0.2902 ⅈ}
e = {-0.3432 - 0.05874 ⅈ, 0.3981 - 0.167 ⅈ}
f = {-0.3607 + 0.02692 ⅈ, 0.1152 + 0.1399 ⅈ}
g = {0.43974998 , -0.096403558 }

h = {0.69356944 , -1.5818768 }

i infinite point

j infinite Point

m = {-0.04568 + 0.2439 ⅈ, -0.1703 + 0.3354 ⅈ}
n = {-0.6839 + 0.4244 ⅈ, -0.2995 + 0.01822 ⅈ}
p = {-0.1794 - 0.09911 ⅈ, 0.2826 - 0.3779 ⅈ}

5.7 The complex  projective  solution  set of a smooth Cubic.

As mentioned  in my  Plane  Curve  Book  in Section  5.5  the  motivation  for  the  concept  of genus  was  the  

observation  by Able  and  Jacobi  in the  early  1800’s  that  certain  functions  involved  in the  indefinite  

integration  of 

 dx

4 x3 - g2 x - g3

produced  doubly  periodic  complex  functions.   It is not  clear  whether  they  realized  that  the  image  of

these  functions  was  a torus  although  we  now  know  this  as the  Corollary  in Section  5.3.   By  midcentury,  

however,  Weierstrass  must  have  realized  this  and  came  up  with  a parameterization  of cubic  functions  

of our  normal  form   y2 = 4 x3 - g2 x - g3 using  doubly  periodic  functions.   Since  we  have  shown  that  

every  smooth  cubic  has  such  a normal  form  we  can  use  Weierstrass’s  parameterization  to illustrate  

how  to construct  an explicit  invertible  map  from  the  solution  set  of a cubic  function  to the  torus.

Fortunately  for  us,  Mathematica  has  a nice  implementation  of Weierstrass’s  functions.   The  intention  of 

Mathematica  is for  finding  closed  forms  for  the  integral  above.   However  if you  read  the  documentation  

carefully  our  use  is at least  partially  covered.

We  will  be  using  the  built  in WeierstrassP and  related  functions  to get  our  parameterization.   Here  is a 

general  overview.   We  start  with  a smooth,   meaning  non-singular,   cubic  function  f .   We  apply  

our weierstrassNormalForm  procedure  of Section  5.4.6  to get  a function  in Weierstrass  normal  form  

wfn = 4 x3 - g2 x - g3 - y2 and  transformation  matrix  Af We  can  extract  g2, g3  to get  a vector  wfv  using  

the  function

In[  ]:= weierstrassVector [wfn_] := {-Coefficient [wfn, x], -wfn /. Thread [{x, y} → 0]}

 The  Weierstrass  parameterization  of wfn   is then  given  for  complex  t by
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In[  ]:= wPar [t_, wfv_] := {WeierstrassP [t, wfv], WeierstrassPPrime [t, wfv]}

If we  want  points  on  our  original  curve  f  they  can  be obtained  from  points {x, y} on wfn using   

fltMD[{x,y},  Inverse[Af]].

Although  Mathematica is necessarily  thinking  of our  use  of  WeierstrassP  they  do  give  a built  in inverse  

function  with  optional  input  InverseWeierstrassP[{x,y},  wfv]  which  will  return  t so that  

wPar[t,wfv]=  {x,y}  provided,  of course,  that  {x , y} is on  the  curve  wfn  with  a very  tight  tolerance,  eg.  

10-16.

wPar  will  be  a doubly  periodic  function,  the  periods  will  depend  on  the  vector  wfv  . To  find  these  we  

use  the  built  in  WeierstrassHalfPeriods  [wfv] .  This  will  return  2 complex  numbers  which  we  can  

interpret  as vectors  using  built  in ReIm.   These  vectors  may  not  be  orthogonal,  but  they  should  be 

independent.   We  can  then  use  these  vectors  to form  a lattice  and  hence  tiling  of the  plane  so that  each  

tile  could  be a complete  domain  for  wpar.   For  example

where  one  tile,  called  the  fundamental  domain  is shown  .  Now  one  can  define  a TransformationFunc
tion on  the  plane  to transform  this  to a tiling  where  each  tile  is a square  of side  2π .  Thus  on  one  hand

we can  parameterize  our  curves  wfn,  including  all  complex  values,  hence  f  on  this  fundamental  domain  

but  because  wpar is periodic  over  the  entire  region  we  can  also  parameterize  our  torus  or even  saddle  

surface  from  this  same  region.   

In[  ]:=

Overall  our  goal  is the  map  defined  by the  composition  of the  top  arrows  in the  graphic  below.   This  

takes  the  solution  set  of our  cubic  curve  to the  torus.   The  inverse  mapping  is the  composition  of the  

lower  arrows.
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In[  ]:=

The  orange  maps  come  from  the  Weierstrass  normal  form  projective  linear  transformation,  the  cyan  

map  is the  Inverse  Weierstrass  map  with  inverse wPar, the  magenta  map  is the  linear  transformation

shown  above  and  the  Gray  maps  are  the  Tpar  transformation.   The  last  maps  could  be replaced  by the  

SSpar  maps  to the  saddle  surface.   It should  be noted  that  that  the  cyan  maps  between  the  Weierstrass  

normal  form  and  the  Weierstrass  fundamental  domain  are  where  the  hardest  non-linear  work  is being  

done.

Unfortunately  if the  input  is not  accurate  enough  to give  a point  on  the  original  curve  or not  accurate

enough  in the  transformation  to normal  form  then  InverseWeierstrassP will  fail  to evaluate  and  will  

not  give  a warning  message.   For  this  reason,  since  we  are  using  this  inside  a composition  I recommend  

the  following  version  of the  inverse  to WeierstrassP  for  this  use.   This  check  to see  if the  original  In
verseWeierstrassP works  and  if not  finds  a close  point  on  the  Weierstrass  normal  form   of sufficient  

accuracy.   The  end  result  may  be slightly  inaccurate  but  will  still  end  up  on  the  torus.   We  could  use  the  

closest  point  algorithm  if we  are  dealing  only  with  real  values,  but  this  works  for  complex  points  as well.

In[  ]:= inverseWP [pe_, wfv_] := Module [{w, ue, le, gve, p1, f, s, t},

w = InverseWeierstrassP [pe, wfv];

If[NumberQ [w], Return [w]];

f = 4 s^3 - wfv〚1〛 s - wfv〚2〛 - t^2;
gve = gtVec2D [f, pe, t, s];

ue = pe + 10^-6 * gve;

le = line2D [ue, {gve〚2〛, -gve〚1〛}, s, t];

p1 = {s, t} /. FindRoot [{f, le}, {s, ue〚1〛}, {t, ue〚2〛}];
w = InverseWeierstrassP [p1, wfv];

If[NumberQ [w], Return [w], Echo [pe, "Fail at InverseWeierstrassP "]];

]

Here  is an example,  note  that  the  actual  normal  cubic  is not  entered.

In[  ]:= fn = -y^2 + 4 x^3 - 3 x + 2;

wfvn = weierstrassVector [fn]

p = {-0.7054100411010285` + 0.8618642458406451` ⅈ, 3.`}

Out[  ]= {3, -2}

Out[  ]= {-0.70541 + 0.861864 ⅈ, 3.}

In[  ]:= q = inverseWP [p, wfvn ]

Out[  ]= 0.432544 - 0.800578 ⅈ
We  wrongly  use  the  display  value  of p
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In[  ]:= pe = {-.70541` + .861864` I, 3.`};

In[  ]:= qe = inverseWP [pe, wfvn ]

Out[  ]= 0.432545 - 0.800578 ⅈ
In[  ]:= Norm [q - qe]

Out[  ]= 5.43521 × 10-7

5.7.1  First  Example

Isaac  Newton  first  described  a cubic  plane  curve  with  three  asymptotes  (infinite  points)  and  two  ovals.   

A nice  example  is my  Newton  Hyperbola  836  described  in my  Plane  Curve  Book.   My  actual  curve  and  

plot  is

In[  ]:= nh836 = 1 + x + 0.2` x2 - 0.008` x3 - y + x y + 0.2` x2 y + 0.2` y2 - 0.2` x y2 - 0.008` y3;

In[  ]:= ContourPlot [nh836 ⩵ 0, {x, -20, 15}, {y, -15, 15}, ImageSize → Small ]

Out[  ]=
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I will  first  show,  without  going  too  deeply  into  the  subject,  how  we  can  use  our  Weierstrass  parameteri -

zation  to plot  the  small  oval.   Then  I will  show  how  to plot  the  complex  curve,  with  the  equation  above,  

on a torus.

The  first  step  is to find  the  Weierstrass  Normal  Form  .  I first  find  inflection  points

In[  ]:= infl836 = allInflectionPoints2D [nh836, x, y]

Out[  ]= {{-0.12874, 22.0683 }, {6.57711, 12.6084 }, {15.8884, -0.527148 }}

By trial  I find  that  the  following   one  is the  easiest  to work  with

In[  ]:= infl836 = {15.888428098023551` , -0.5271483543763018` };

In[  ]:= {wfn836, A836} = weierstrassNormalForm [nh836, infl836, x, y]

Out[  ]= 3.71474 - 7.25646 x + 4. x3 - 1. y2, {{0.0847194 , 0.751728 , -0.949785 },

{1.73264, -0.689376 , 3.96493 }, {-0.025385 , 0.659709 , 0.751093 }}
I can  find  points  on  the  small  oval  
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In[  ]:= sops = NSolveValues [nh836 ⩵ 0 && y ⩵ 3, {x, y}]

Out[  ]= {{-2.8511, 3.}, {0.177637 , 3.}, {102.673, 3.}}

The  first  two  appear  to be  on  this  oval,  the  third  is not  .

In[  ]:= wsop = fltMD [sops〚2〛, A836 ]

Out[  ]= {0.484442 , 0.80881 }

In[  ]:= Show [ContourPlot [wfn836 ⩵ 0, {x, -2, 2}, {y, -3, 3}],

Graphics [{Green, PointSize [.04], Point [wsop ]}], ImageSize → Small ]

Out[  ]=
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Now  we  find  the  Weierstrass   vector  from  the  normal  form

In[  ]:= wfv836 = weierstrassVector [wfn836 ]

Out[  ]= {7.25646, -3.71474 }

The  point  wsop  can  be recovered  by the  Weierstrass  parameter  function

In[  ]:= inwsop = InverseWeierstrassP [wsop, wfv836 ]

Out[  ]= 1.11846 - 1.02932 ⅈ
In[  ]:= wPar [inwsop, wfv836 ]

Out[  ]= 0.484442 - 3.60822 × 10-16 ⅈ, 0.80881 + 1.9984 × 10-15 ⅈ
which  agrees  with  wso p a�er  a chop  . Now  I claim,  from  experience,  that  all  points  on  the  small  oval  

will  have  parameters  with  the  same  complex  part

In[  ]:= cpsop = Im[inwsop ] I

Out[  ]= 0. - 1.02932 ⅈ
We  then  guess  by trial  and  error,  our  using  the  period  information  below,   that  some  points  on  the  

small  oval  in the  normal  form  are  given  by
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In[  ]:= smOvalW836 = Re[Table [wPar [t + cpsop, wfv836 ], {t, -1.8, 1.8, .2}]]

Out[  ]= {{0.705235 , -0.0157043 }, {0.688668 , -0.154575 }, {0.639967 , -0.345346 },

{0.543429 , -0.642888 }, {0.371722 , -1.10581 }, {0.0884376 , -1.75379 },

{-0.333574 , -2.4468 }, {-0.863066 , -2.7214 }, {-1.349, -1.9194 },

{-1.55309, 0.}, {-1.349, 1.9194 }, {-0.863066 , 2.7214 }, {-0.333574 , 2.4468 },

{0.0884376 , 1.75379 }, {0.371722 , 1.10581 }, {0.543429 , 0.642888 },

{0.639967 , 0.345346 }, {0.688668 , 0.154575 }, {0.705235 , 0.0157043 }}

In[  ]:= So

In[  ]:= smOvalfh836 = fltMD [#, Inverse [A836 ]] & /@ smOvalW836

Out[  ]= {{-0.237931 , 5.24962 }, {-0.613045 , 5.14342 }, {-1.19061, 4.70561 }, {-1.98105, 3.9497 },

{-2.88308, 2.96237 }, {-3.66224, 1.9249 }, {-4.04775, 1.03715 }, {-3.88672, 0.413041 },

{-3.23152, 0.0607155 }, {-2.31345, -0.0630182 }, {-1.41128, 0.00475001 },

{-0.705143 , 0.261776 }, {-0.237742 , 0.738193 }, {0.0290328 , 1.46194 }, {0.152364 , 2.3981 },

{0.179131 , 3.4085 }, {0.13641, 4.29903 }, {0.027237 , 4.92339 }, {-0.171109 , 5.22568 }}

Checking

In[  ]:= Show [ContourPlot [nh836 ⩵ 0, {x, -15, 10},

{y, -10, 10}, ContourStyle → Directive [{Orange, Thickness [.01]}]],

Graphics [{Black, Dashed, Line [smOvalfh836 ]}]]

Out[  ]=
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To go farther  we  need  the  Weierstrass  Half  Periods

In[  ]:= WHalfPer = ReIm [WeierstrassHalfPeriods [wfv836 ]]

Out[  ]= {{0., -1.02932 }, {1.82442, 0.}}

These  are  easy  to work  with  since  they  are  orthogonal  as real  vectors  and  in the  direction  of the  axes.  

Thus  the  transformation  that  gives  the  desired  lattice  is given  by transformation  matrix
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In[  ]:= B836 = {{Pi / 1.8244232447332889` , 0, 0}, {0, Pi / -1.0293247723937833` , 0}, {0, 0, 1}};

B836 // MatrixForm

Out[  ]//MatrixForm=

1.72196 0 0

0 -3.05209 0

0 0 1

In[  ]:= fltMD [#, B836 ] & /@ WHalfPer

Out[  ]= {{0., 3.14159 }, {3.14159, 0.}}

with  the  fundamental  domain  

In[  ]:= Graphics [{{Green, Polygon [{{-Pi, Pi}, {Pi, Pi}, {Pi, -Pi}, {-Pi, -Pi}}]},

{Blue, PointSize [.02], Point [Flatten [Table [2 Pi {i, j}, {i, -1, 1}, {j, -1, 1}], 1]]},

{Black, Text [{0, 0}, {.7, .7}], Text ["{π,π ⅈ}", {π, π } + {.3, .3}],

Text ["{2π,2π ⅈ}", {2 π + 1.8, 2 π }]}}, ImageSize → Small ]

Out[  ]=
{0, 0}

{π ,π ⅈ}
{2π ,2π ⅈ}

Note  we  can  modify  the  routine  reduce2pipi  in Global  Functions  to transform  any  complex  number  

into  a unique  point  of this  domain.

In[  ]:= reduce2pipi [{12.35, -8.756 }]

Out[  ]= {-0.216371 , -2.47281 }

We  can  now  define  a period  function  of period  2 π from  the  fundamental  square  -π ≤ x, y ≤ π  to the  

plane

In[  ]:= WPpar [{x_, y_}] :=

fltMD [wPar [With [{z = fltMD [{x, y}, Inverse [B836 ]]}, z〚1〛 + z〚2〛 ⅈ], wfv836 ], Inverse [A836 ]]

Checking  for  periodicity

In[  ]:= r2 = RandomReal [{-5, 5}, 2]

Out[  ]= {1.33713, -2.96648 }

In[  ]:= cr2 = WPpar [r2]

Out[  ]= {0.0123326 - 0.0580076 ⅈ, 1.3548 - 0.234791 ⅈ}
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In[  ]:= WPpar [reduce2pipi [r2]]

Out[  ]= {0.0123326 - 0.0580076 ⅈ, 1.3548 - 0.234791 ⅈ}
Then  we  have  a function  from  the  standard  torus  to the  complex  projective  solution  set  of fh836.

In[  ]:= Tor2nh836 [{x_, y_, z_}] := WPpar [InvTor [{x, y, z}]]

For  example  consider  the  exact  standard  torus  point

In[  ]:= pt1 = 
7 π

6 2

, -
7 π

6 2

, -
2 π
3

;

In[  ]:= qc = Tor2nh836 [pt1]

Out[  ]= {0.4043 + 0.23137 ⅈ, 6.59127 - 6.71793 ⅈ}
In[  ]:= nh836 /. Thread [{x, y} → qc]

Out[  ]= 6.38156 × 10-12
- 5.61773 × 10-12 ⅈ

Our  inverse  function  is then

In[  ]:= nh2Tor836 [{x_, y_}] := Module [{s, w, u, v},

{s, w} = fltMD [{x, y}, A836 ];

{u, v} = ReIm [inverseWP [{s, w}, wfv836 ]];

{s, w} = reduce2pipi [fltMD [{u, v}, B836 ]];

Tpar /. Thread [{r, t} → {s, w}]]

Checking  we  see  for  the  example  just  above

In[  ]:= nh2Tor836 [qc]

Out[  ]= {2.59168, -2.59168, -1.48096 }

but

In[  ]:= N[pt1]

Out[  ]= {2.59168, -2.59168, -1.48096 }

So this  inverse  does  work  .

Earlier  we  saw  a large  number  of points  on  the  small  oval  of nh836  was  given  by the  list  smOvalfh836.  

Applying  this  inverse  function  to random  points  in this  set

In[  ]:= at = nh2Tor836 [smOvalfh836 〚2〛]
bt = nh2Tor836 [smOvalfh836 〚11〛]
ct = nh2Tor836 [smOvalfh836 〚13〛]

Out[  ]= -4.32594, -1.39133 × 10-15, 1.03185 
Out[  ]= -1.91519, -4.01803 × 10-15, -0.981497 
Out[  ]= -2.60398, 2.63169 × 10-15, -1.47593 
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we deduce  that  this  small  oval  goes  to the  curve  on  the  torus  y = 0 and  x < 0.  On  the  other  hand  comput -

ing  some  points  on  the  large  oval  of nh836  we  get  results  such  as

In[  ]:= dc = NSolveValues [{nh836, y - 9}, {x, y}]〚2〛
dt = nh2Tor836 [dc]

ec = NSolveValues [{nh836, x - 6}, {x, y}]〚2〛
et = nh2Tor836 [ec]

fc = NSolveValues [{nh836, y + 9}, {x, y}]〚2〛
ft = nh2Tor836 [fc]

Out[  ]= {2.68852, 9.}

Out[  ]= {4.01089, 0., 1.30833 }

Out[  ]= {6., -0.949031 }

Out[  ]= {1.83558, 0., -0.872775 }

Out[  ]= {-17.8383, -9.}

Out[  ]= {2.86122, 0., 1.54557 }

Similarly  we  can  deduce  that  these  go the  curve  y = 0 and  x > 0.  In particular  the  real  solution  set  of 

nh836  goes  to the  set y = 0  of the  torus.

The  infinite  points  of nh836  are  real  and  given  by 

In[  ]:= rinf836 = infiniteRealPoints2D [nh836, x, y]

Out[  ]= {{5.37825, 4.96196, 0}, {-4.66193, -0.194615 , 0}, {-0.0830776 , 2.15705, 0}}

We  can'  t handle  these  directly  with  nh2Tor836  so we  work  manually

On wfn836  these  points  go to

In[  ]:= rinfwfn836 = fltiMD [#, A836 ] & /@ rinf836

Out[  ]= {{1.33433, 1.88016 }, {53.8773, 790.686 }, {1.13286, -1.14443 }}

Then  on  the  Weierstrass  Fundamental  domain  they  go to 

In[  ]:= rinfW = inverseWP [#, wfv836 ] & /@ rinfwfn836

Out[  ]= {2.68921 + 0. ⅈ, 3.5126 + 0. ⅈ, 1.09589 }

In the  pipi  square

In[  ]:= rinfpipi = (reduce2pipi [fltMD [ReIm [#], B836 ]]) & /@ rinfW

Out[  ]= {{-1.65247, 0.}, {-0.234611 , 0.}, {1.88708, 0.}}

so they  end  up  in the  torus  by

In[  ]:= {it, jt, kt} = Tpar /. Thread [{r, t} → #] & /@ rinfpipi

Out[  ]= {{3.22326, 0., 1.56867 }, {1.80541, 0., 0.825839 }, {3.45787, 0., -1.53863 }}

The  raw  data  is hidden  in the  print  version  . Here   ares  selected  points  of the  complex  projective  solu -
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tion  set  of nh836   with  their  value  in  the  solution  space  and  their  image  value  on  the  torus,  only  top  

half  is shown.
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1 + x + 0.2 x2 - 0.008 x3 - y + x y + 0.2 x2 y + 0.2 y2 - 0.2 x y2 - 0.008 y3 = 0

Out[  ]=
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Out[  ]=

Selected Points

point solution nh836 torus

a {-3.25717 , 2.50039 } {-3.14159 , 0, 1.5708 }

b {-2.95346 , -0.00125406 } {-1.80541 , 0., 0.825839 }

c {-0.237742 , 0.738193 } {-2.60398 , 0, -1.47593 }

d {2.68852 , 9. } {4.01089 , 0., 1.30833 }

e {8., 13.9397 } {1.83558 , 0., -0.872775 }

f {-17.8383 , -9. } {2.86122 , 0., 1.54557 }

g {-0.816527 , 5.00896 } {-4.18879 , 0., 1.1708 }

h {-26.1733 , -2.68129 } {2.0208 , 0., 1.10055 }

i infinite point {3.22326 , 0., 1.56867 }

j infinite point {1.80541 , 0., 0.825839 }

k infinite point {3.45787 , 0., -1.53863 }

m {0.498908 - 0.491756 ⅈ, 6.95827 + 0.239189 ⅈ} {2.35619 , 4.08105 , 0. }

n {-3.46778 - 1.14937 ⅈ, 2.45776 - 1.43264 ⅈ} {-4.08105 , 2.35619 , 0. }

p {-0.15189 - 0.228384 ⅈ, 5.36036 + 0.0838272 ⅈ} {-2.22144 , 2.22144 , 1.5708 }

q {-4.1648 - 3.14172 ⅈ, 2.24528 - 3.50171 ⅈ} {0., 3.14159 , 1.5708 }

r {-6.08816 - 8.56169 ⅈ, 1.02551 - 8.39626 ⅈ} {2.22144 , 2.22144 , 1.5708 }

s {-6.08816 + 8.56169 ⅈ, 1.02551 + 8.39626 ⅈ} {2.22144 , -2.22144 , 1.5708 }

t {-4.1648 + 3.14172 ⅈ, 2.24528 + 3.50171 ⅈ} {0., -3.14159 , 1.5708 }

u {-3.46778 + 1.14937 ⅈ, 2.45776 + 1.43264 ⅈ} {-2.22144 , -2.22144 , 1.5708 }

Out[  ]=
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Note  that  the  real  part  of our  curve  on  the  torus  consists  of the  magenta  and  blue  circles.

5.7.2  Second  Example   (Weierstrass  Example  8)

For  our  second  example  we  will  use  the  pseudo  random  cubic

In[  ]:= f8 = 0.8054578518310507` - 0.9960158007224074` x + 4 x3 - y2

Out[  ]= 0.805458 - 0.996016 x + 4 x3 - y2

But  rather  than  plot  our  solution  set  on  the  torus  we  will  plot  it on  the  topologically  equivalent  saddle  

surface  because  this  looks  nicer.

This  is already  in Weierstrass  normal  form,  which  will  save  a little  work,  but  is an interesting  cubic  by 

itself  .

In[  ]:= ContourPlot [f8 ⩵ 0, {x, -4, 4}, {y, -6, 6}, ImageSize → Small ]

Out[  ]=
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Our  Weierstrass  vector  is 

In[  ]:= wvf8 = weierstrassVector [f8]

Out[  ]= {0.996016 , -0.805458 }

and  our  half  periods  are  

In[  ]:= whp8 = ReIm [WeierstrassHalfPeriods [wvf8 ]]

Out[  ]= {{0., -1.47304 }, {1.4832, -0.736519 }}

Our  lattice  here  is not  rectangular
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In[  ]:= Graphics [{{Blue, PointSize [.02],

Point [Flatten [Table [2 i whp8〚1〛 + 2 j whp8〚2〛, {i, -2, 2}, {j, -2, 2}], 1]]},

{Red, PointSize [.02], Point [{0, 0}]}, {Green, Thickness [.01],

Line [{-whp8〚1〛, {2 whp8〚2, 1〛, 0}, whp8〚1〛, - {2 whp8〚2, 1〛, 0}, -whp8〚1〛}]},
{Black, Text [{0, 1.473 }, -whp8〚1〛 + .3], Text [{2.97, 0}, {4.2, 0}]}}, ImageSize → 200]

Out[  ]=

{0, 1.473 }

{2.97 , 0}

The  region  enclosed  by the  green  diamond  is a fundamental  domain.

In[  ]:= B8 = {{1.0590557059044317` , -2.1327298486921644` },

{1.0590557059044317` , 2.1327298486921644` }};

In[  ]:= B8 // MatrixForm

Out[  ]//MatrixForm=

1.05906 -2.13273

1.05906 2.13273

Then  the  linear  rotation  given  by B8 takes  the  side  of the  fundamental  domain  between  the  2 marked  

points  to the    π - π  square.

In[  ]:= B8.-whp8〚1〛
B8.{2 whp8〚2, 1〛, 0}

Out[  ]= {-2.77266, 0.662988 }

Part : Part 2 of {{0. , -1.02932 }, {1.82442 , 0. }}[{0.996016 , -0.805458 }] does not exist .

Out[  ]= {0. + 2.11811 {{0., -1.02932 }, {1.82442, 0.}}[{0.996016 , -0.805458 }]〚2, 1〛,
0. + 2.11811 {{0., -1.02932 }, {1.82442, 0.}}[{0.996016 , -0.805458 }]〚2, 1〛}

We  will  focus  on  the  map  from  the  π - π square  to and  from  the  normal  form  cubic  f8.  We  could  then  

transport  this  to the  torus,  saddle  surface  or even  hyperboloid  if we  wish.   We  will  call  these  the  Up and  

Down  maps.   The  Up map  is fairly  easy  
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In[  ]:= wUp8 [{u_, v_}] := With [{ip = Inverse [B8].{u, v}}, wPar [ip〚1〛 + I ip〚2〛, wvf8 ]]

The  input  is any  real  pair  {u, v}  with  -π ≤ u, v ≤ π  and  output  is a complex  solution  of f8 = 0.

Testing  we  have  somewhat  uneven  accuracy

In[  ]:= Do[Echo [f8 /. Thread [{x, y} → wUp8 [RandomReal [{-Pi, Pi}, 2]]]], {3}]

» - 1.11022 × 10-15
+ 1.94289 × 10-15 ⅈ

» - 6.99441 × 10-15
+ 1.03806 × 10-14 ⅈ

» - 1.11355 × 10-13
- 1.92069 × 10-13 ⅈ

This  will  be  good  enough  for  plotting  purposes,  but  we  must  use  the  more  complicated  inverse

In[  ]:= wDown8 [{x_, y_}] := reduce2pipi [B8.ReIm [inverseWP [{x, y}, wvf8 ]]]

Here  the  input  is a complex  solution  of f8 = 0 and  output  is a pair  of real  numbers  in the  π  - π  square.

In[  ]:= p1 = {-0.7180023637877024` , 0.2`};

f8 /. Thread [{x, y} → p]

Out[  ]= -2.60817 + 1.72716 ⅈ
In[  ]:= q1 = wDown8 [p1]

Out[  ]= {-3.06133, -3.06133 }

In[  ]:= Chop [wUp8 [q1]]

Out[  ]= {-0.718002 , 0.2}

A pseudo  random  complex  example  is 

In[  ]:= q2 = {-1.1200065916117765` , 3.034594424900483` }

Out[  ]= {-1.12001, 3.03459 }

In[  ]:= p2 = wUp8 [q2]

f8 /. Thread [{x, y} → p2]

Out[  ]= {0.0369951 - 0.468161 ⅈ, 0.940683 + 0.461922 ⅈ}
Out[  ]= -2.10942 × 10-15

- 1.11022 × 10-15 ⅈ
In[  ]:= q2a = wDown8 [p2]

q2 - q2a

Out[  ]= {-1.12001, 3.03459 }

Out[  ]= 0., 3.55271 × 10-15 
These   illustrate  how  these  maps  go where  they  are  supposed  to do  and  are  two  sided  inverses.   Note  

above  that  p1  was  a real  solution  of f8 and  the  result  of wDown8  was  a pair  of equal  real  numbers.   In 

the  complex  case  one  did  not  get  a pair  of equal  real  numbers.  This  suggests  that  the  real  diagonal  of 

the  π - π  square  maps  to the  real  locus  and  conversely.   For  example  note
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In[  ]:= Show [ContourPlot [f8 ⩵ 0, {x, -3, 3}, {y, -6, 6},

ContourStyle → Directive [Thickness [.01], Orange ]], ParametricPlot [Chop [wUp8 [{t, t}]],

{t, -Pi, Pi}, PlotStyle → Directive [Black, Dashed ]], ImageSize → Small ]

Out[  ]=
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-6

-4

-2

0

2

4

6

Now  we  decide  to plot  the  complex  solution  set  of f8 on  the  saddle  surface  instead  of the  torus,  so we  

modify  our  up  and  down  maps  slightly,  multiplying  wDown8  by .5 and  wUp8  by 2  to have  the  correct  

domain π /2 ≤ s, t ≤ π /2 for our SSpar parameterization from section  5.2.

In[  ]:= Show [SSparSpace , ParametricPlot [{t, t}, {t, -Pi / 2, Pi / 2}, PlotStyle → Blue ]]

Out[  ]=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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The  red  lines  are  the  locus  of those  points  in this  domain  that  go to infinite  points  under  SSpar,  the  blue

obviously  the  diagonal.   Since  the  red  lines  are  given  by  x = ssa   and   y = ssb  the  intersection  points  are

{ssa,ssa}  and  {ssb,ssb}  where  

In[  ]:= ssa = N[ArcTan [3]]

ssb = N[ArcTan [1]]

Out[  ]= 1.24905

Out[  ]= 0.785398

These  correspond  to infinite  points  on  the  saddle  surface  and  the  following  points  of f8

In[  ]:= jf = Chop [wUp8 [2 {ssa, ssa}]]

kf = Chop [wUp8 [2 {ssb, ssb}]]

Out[  ]= {-0.339802 , -0.993461 }

Out[  ]= {0.427876 , -0.832241 }

On the  other  hand  the  curve  f8 has  a single  infinite  point  {0,1,0}.   But  the  infinite  point  for  the  Weier -
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strassP  function  is 0 so 

In[  ]:= wUp8 [{0, 0}]

Power : Infinite expression
1

(0. + 0. ⅈ)2 encountered .

Power : Infinite expression
1

(0. + 0. ⅈ)3 encountered .

Out[  ]= {ComplexInfinity , ComplexInfinity }

and  so

In[  ]:= is = SSpar [{0, 0}]

Out[  ]= {2.20657, -1.44126, -3.18024 }

is the  corresponding  point  on  the  saddle  surface.

As in the  first  example  we  can  plot  selected  points  as in the  following  table.   One  comment  is that  since  

wDown8 has  a corrector  step  one  can  type  in an approximate  point  in wDown8  to get  an accurate  

point  in the  saddle  surface  and  then  use  wUp8 to get  a very  accurate  point  in the  curve.   For  example  

for  my  first  point

In[  ]:= f8 /. Thread [{x, y} → {.373, .801}]

Out[  ]= -0.0000765738

In[  ]:= as = SSpar [.5 wDown8 [{.373, .801}]]

Out[  ]= {1.17821, -0.910332 , -1.07256 }

In[  ]:= af = Chop [wUp8 [2 InvSS [as]]]

f8 /. Thread [{x, y} → af]

Out[  ]= {0.373058 , 0.800976 }

Out[  ]= -1.11022 × 10-15

so I have improved my residue by a factor of 1010.

It is also  worth  noting  that  it is easy  to find  points  on  the  saddle  surface,  just  think  of two  real  numbers,  

say  r,s  then  {r,s,r  s} is a point.   One  then  then  use  WUp8  to find  a point  in the   solution  set.   For  example  

let

In[  ]:= gs = {3, 1.1, 3.3}

Out[  ]= {3, 1.1, 3.3}

In[  ]:= gf = Chop [wUp8 [2 InvSS [gs]]]

Out[  ]= {0.454513 - 0.21764 ⅈ, -0.713384 + 0.197311 ⅈ}
In[  ]:= f8 /. Thread [{x, y} → gf]

Out[  ]= 3.88578 × 10-16
+ 9.4369 × 10-16 ⅈ
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0.805458 - 0.996016 x + 4 x3 - y2 = 0

Out[  ]=
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Out[  ]=

point solution f8 saddle surface

a {0.373058 , 0.800976 } {1.17821 , -0.910332 , -1.07256 }

b {0.0557982 , -0.866358 } {7.05402 , 1.13234 , 7.98754 }

c {1.77165 , -4.61346 } {2.84656 , -2.19231 , -6.24053 }

d {-0.4, 0.973583 } {0.145976 , -0.651173 , -0.095056 }

e {1.33535 , 3. } {1.65126 , -1.10044 , -1.81711 }

f {-0.719703 , -0.176495 } {-2.15759 , -0.378341 , 0.816306 }

g {0.454513 - 0.21764 ⅈ, -0.713384 + 0.197311 ⅈ} {3, 1.1, 3.3 }

h {0.249724 - 0.0718865 ⅈ, -0.776975 - 0.0124136 ⅈ} {4, 1, 4}

i infinite Point {2.20657 , -1.44126 , -3.18024 }

j {-0.339802 , -0.993461 } infinite Point

k {0.427876 , -0.832241 } infinite Point

l {-1.21094 - 0.307908 ⅈ, -1.12035 + 2.22907 ⅈ} {5, -0.8, -4}

m {-0.0439841 - 0.17124 ⅈ, -0.935075 - 0.0998141 ⅈ} {5, 0, 0}

n {-0.293159 + 0.652481 ⅈ, -1.61489 + 0.336897 ⅈ} {0, -5, 0}

o {0.219746 + 0.391215 ⅈ, -0.585984 + 0.343408 ⅈ} - 5 , - 5 , 5
p {-0.0428533 + 0.392137 ⅈ, -1.01089 + 0.30821 ⅈ} {-2, -6, 12 }

q {-9.98835 - 0.196065 ⅈ, 1.85994 - 63.0407 ⅈ} {1.8, -2, -3.6 }

r {-1.37753 + 0.802384 ⅈ, -2.99584 - 2.57118 ⅈ} {1, -7, -7}

Out[  ]=
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