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1 Introduction

In this paper I outline some algorithms for working with real numerical varieties with an
application to parameterizing quadratic surface intersection curves (QSIC). A revised version
of this paper has now been published [8].

Although possibly the simplest space curves, the study of QSIC has been the subject of recent
research [9, 15, 16]. From the point of view of parameterizing QSIC the papers of L. Dupont,
D. Lazard, S. Lazard and S. Petitjean [9] essentially solve the problem. Although their method
requires starting with exact systems, takes 65 pages and involves looking at many cases the
accompanying software [10] is extremely fast and accurate. The coefficients, which must be
integers, can be quite large so can adequately approximate most numerical systems.

In this paper I describe a numerical based method. Although I doubt I could ever achieve
the completeness and speed of [10] my method is straight forward and, as you will see in this
report, can be described using standard methods of numerical curves, with the one step specific
to QSIC described in the few pages of Section 5. Moreover this section simply reformulates
a classical argument into numerics. Although, for ease of replication, examples in this report
are given exactly, the method immediately switches to an equivalent numerical system, so
examples could be given numerically. Unlike [9] which uses the projective line as a parameter
space I use simple affine real plane curves of the form y = u(x) or y2 = u(x) for a real numerical
polynomial u(x) of degree at most 3.

The tools used consist of (1) fractional linear transformations [1] given by a matrix based pre-
sentation, (2) Macaulay and Sylvester matrix based computations for decomposing numerical
curves into irreducible components and finding equations for images of curves under polyno-
mial maps, and (3) methods involving numerical polynomial system solving to find real points
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on numerical algebraic varieties. For (3) these method are quite recent and this is the first
exposition of these methods.

The method for identifying and parameterizing QSICs has the following steps:

1. Do a (complex) numerical irreducible decomposition to identify algebraic components. If all
components are of degree 1 and/or 2 go to Step 5.

2. Find a random real nonsingular real point, if any, of the QSIC.

3. Using the original system, find a numerical cubic plane curve birationally equivalent to a union
of components of the QSIC (Main Theorem on QSIC) and the birational transformations.

4. Separate the cubic into irreducible components, use 1) to check whether all components of
original QSIC with real points are accounted for. Otherwise the missing line will come from
Step 1.

5. Transform each component via fractional linear transformations to parameter curves of form
y = u(x) or y2 = u(x).

6. Analyze the rational parameterizations on the parameter curves to obtain practical parame-
terizations of the QSIC.

Note this last step is not covered in [10]. The only step specific to QSICs is step 3.

In §8 below we give a complete example using this method.

The next three sections deal with general techniques. In this paper the phrase algebraic set will
refer to the point set X in Rs of solutions of a system of real polynomials in s-variables. On
the other hand algebraic variety will refer to an ideal I of R[x1, . . . , xs] such that X = V (I).

2 H-bases and Duality Method

For numerical work the equivalalent of a Gröbner Basis is an H-basis [13, 14], also known as a
Macaulay basis [12, §4.2]. An H-basis of an affine ring, eg. ring of the form A = C[x1, . . . , xs]/I,
is a set {f1, . . . , fn} ⊆ C[x] = C[x1, . . . , xs] such that if f ∈ I then there exist g1, . . . , gn ∈ C[x]
such that f = g1f1+. . . gnfn where for each i deg(gifi) ≤ deg(f). Note that if B = {f1, . . . , fn}
is a homogeneous basis of I or is a Gröbner basis with respect to a positive degree ordering of
I then B is an H-basis.

A theory of local-global duality is outlined in [6], a more recent summary has been given in
[7].

In particular there are two numerical algorithms that I will use extensively in this paper

Algorithm 1: Given a basis B, not necessarily H-basis, for ideal I ⊆ R[x] and points
p̂1, . . . , p̂k ∈ V (R[x]/I) an H-basis is returned for the variety Y = V (J ) which is the union
of irreducible components of V (I) which contain one or more of the points p̂1, . . . , p̂k.
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Algorithm 2: Given a real H-basis for the ideal of variety X = V (I) and an algebraic map
φ = {φ1, . . . , φs} : Rs 7→ Rp, the φi ∈ R[x1, . . . , xp], a real H-Basis will be returned for the
variety V (J ) which is the Zariski closure of φ(X ).

It should be noted that these algorithms require the user to supply both a numerical tolerance
and appropriate degree to assure an H-basis. If the user has his or her own favorite algorithms
to do these calculations they may be substituted provided that they do work for ideals defined
by floating point polynomials.

3 Fractional Linear Transformations

We will make use of fractional linear transformations [1], that is transformations of the form

x = (x1, . . . , xs) 7→
(
α1(x)

δ(x)
, . . . ,

αs(x)

δ(x)

)
where the αi and δ are linear functions in s variables, i.e. αi = αi,1x1 + · · · + αi,sxs + αi,s+1.
If A is the (s+ 1)× (s+ 1) matrix

A =


α1,1 . . . α1,s α1,s+1

. . . . . . . . . . . . . . . . . . . . . .
αs,1 . . . α1,s αs,s+1

δ1 . . . δs δs+1


then this is the transformation

x 7→ A


x1
...
xs
1

 = (y1, . . . , ys, ys+1) 7→ (y1, . . . , ys)/ys+1 (1)

In effect we are homogenizing, applying a linear projective transformation and then specializing
again. Note that if we compose the fractional linear transformation given by A with the one
given by B we get the fractional linear transformation given by BA. In particular if A is
invertible then the fractional linear transformation given by A is birational.

To find the action of the fractional linear transformation associated with a matrix A on an
affine curve just follow the instructions in (1), homogenize, transform using Algorithm 2, and
dehomogenize.

4 Finding Real Points on Curves

My main algorithm later on requires finding a random real point on the curve. The first thing
to try is to intersect the curve with random real hyperplane and check for real solutions. One
may repeat several times if a real point has not been found. However, in general the real
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Figure 1: Real plane Curve (peanut), Jacobian Determinant curve and `

locus of an algebraic set can be quite small or even a finite set so this simple method may not
produce a real point.

In the case of a plane f(x, y) = 0 curve a very efficient way to find real points is to look for real
solutions of the system {f,J (f, `)} where ` = ax+ by for random or chosen real numbers a, b
not both zero and J (f, `) is the determinant of the Jacobian of {f, `}. This idea was motivated
by the paper [4]. The picture in Figure 1 shows how J (f, `) grabs the real locus of the curve.
The points found include all those where the tangent line to the curve is parallel to the line `
as well as any singular points, including any isolated points of the curve. If the curve has an
oval, which means in this paper a non-empty bounded topological component, then at least
one real point will be found. Further, letting ` = x or ` = y will find the x, y bounds of the
oval.

For space curves, or curves in Rs in general, we can try the following based on the paper
[3]. Let F = {f1, . . . , fs−1} ⊆ R[x1, . . . , xs] define a curve in Rs. Pick a non-zero linear form
k = k1x1 + · · ·+ ksxs randomly or purposefully.

Let J(f1, . . . , fs, k) be the Jacobian matrix, B a s×s orthogonal matrix, and C = [1, c1, . . . cs−1]
a 1×s matrix where the ci are new variables. Then A = C.B.J is a 1×s matrix A = [a1, . . . , as],
let G = {a1, . . . , as, f1, . . . , fs−1}. Then G is a system of 2s−1 equations in the 2s−1 variables
x1, . . . , xs, c1, . . . , cs−1. Find the real solutions for this square system G, and discard the last
s− 1 coordinates corresponding to the c′s. If s is small and the system is exact one could use
Gröbner bases with an elimination order to get an s × s system. The solution points in Rs

should be the points where the curve intersects a hyperplane parallel to V (k) singularly, in
particular isolated points should be found. If the curve is an oval any k should be successful
otherwise different k should be tried. Failure of this method may be caused by incomplete
identification of the real solutions of G. Since this can be a common problem of solvers which
find all complex solutions, what makes this method appealing is that we obtain a square
system which is more likely to properly suggest real solutions than when trying to solve over
or under-determined systems.

Example: (Example 3 of §9 below). Consider the QSIC V ({f, g}) given by f = x2 + z2 −
2y, g = −3x2 + y2 − z2. This space curve and the birationally equivalent plane curve h of
Example 3 both have isolated real points. To find an isolated zero of h we choose, randomly,
l = 0.816353x− 0.273704y and solve the system {J (h, l), h} getting 6 real solutions of which 2
are the multiple zero (0.103102,−0.0989506) indicating a singular solution. Further inspection
reveals that this is an isolated zero.

4



For the space curve V ({f, g}) we pick a random real linear form k = −0.668293x−0.286001y−
0.214335z and form A = C.B.J where B is a random orthogonal matrix and J is the Jacobian
matrix of the system {f, g, k}

A = [1, c, d]

−0.658953 −0.557442 −0.505014
0.70223 −0.696511 −0.147464
−0.269545 −0.451808 0.850421

 2x −2 2z
−6x 2y −2z

0.816353 −0.273704 0


=
[
−0.41227− 0.120382c+ 0.694244d+ 2.02675x+ 5.58353cx+ 2.17175dx,

1.45613− 1.3641c+ 0.306327d− 1.11488y − 1.39302cy − 0.903615dy,

− 0.20302z + 2.79748cz + 0.364524dz
]

Solving the system consisting of the three polynomials above in x, y, z, c, d and f, g by Math-
ematica and Bertini 4 real solutions are identified by the two solvers which give essen-
tially the same results. Two of these zeros essentially agree and give a multiple solution with
(x, y, z) = (0, 0, 0) indicating a singular point which is, in fact, isolated. The two other solu-
tions for x, y, z are (±3.4641, 6.0000, 0), giving random real points on the 1 dimensional real
component of the solution.

I should mention that discussion of this example with Daniel Lichtblau motivated the material
in this section.

5 Main Reduction

Here we give a constructive proof of a numerical simplification of a classically known fact: a
QSIC is generically birationally equivalent to a degree 3 plane curve plus, perhaps, a line.

Before stating this formally we recall Abhyankar [1, p. 21]

A theorem is not something that is true, but is rather a nice geometric statement
that you want to be true. So you adjust your definitions properly

To this end we define a real affine QSIC to be a QSIC V ({f, g}) such that every complex
projective component has a real positive dimensional affine solution set.

Theorem 1 Let C be a real affine QSIC. There is a plane cubic h and rational maps Φ :
V (h) → C, Ψ : C → V (h) such that Ψ ◦ Φ = idV (h). In particular V (h) is birationally
equivalent to a Zariski closed subset of C.

We will prove this by explictly giving Φ and Ψ. The method used follows the main case of [5,
§8, case (iv)].

So let f, g be quadratic functions in the three variables x, y, z, C = V ({f, g}). Pick a random
real solution x̂, as in §4, of the system {f = 0, g = 0}, such a solution exists by our assumption.
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Now homogenize by fh = t2 ∗ f(xt ,
y
t ,

z
t ) and similarly for gh. Although we are thinking

“projective curve” we really will be working in affine x, y, z, t space.

Now construct a random orthogonal 4 × 4 matrix A satisfying Ax̂ = [0, 0, 0, 1]T . Using Algo-
rithm 2 of §2 get homogeneous equations {f1, g1} for the QSIC which is the image of C under
the linear (projective) transformation [x, y, z, t]T 7→ A[x, y, z, t]T . Since [0, 0, 0, 1] is a solution
of this system the coefficient of t2 is 0 for both f1, g1. Collect the terms involving t and write

f1 = tL+R (2)

g1 = tM + S (3)

where L,M are linear in x, y, z and R,S are homogeneous quadrics in x, y, z. The linear
polynomials L,M will be independent, and hence both non-zero, with probability 1; if this
does not happen try a different random point and/or orthogonal matrix. Then hh = LS−RM
is a hogeneneous cubic. Finally h(x, y) = hh(x, y, 1) is the desired plane cubic.

The forward map is

Ψ : [x, y, z] 7→ A[x, y, z, 1]T = [x̌, y̌, ž, ť ]T 7→ [x̌, y̌]/ž (4)

Whereas the backwards map makes use of (2) to recover t satisfying fh, gh from [x, y, z]:

Φ : [x, y] 7→ A−1
[
x, y, 1,−R(x, y, 1)

L(x, y, 1)

]T
= [x̃, ỹ, z̃, t̃ ]T 7→ [x̃, ỹ, z̃]/t̃ (5)

It is a straightforward check that, given our assumption, these maps do have the indicated
domain and codomain with perhaps the exception of finitely many points.

To finsh the proof we need to calculate Ψ ◦ Φ. If we plug the last expression in the definition
of Φ, [x̃, ỹ, z̃ ]/t̃, in for the first expression [x, y, z] in the definition of Ψ then the first term is

1

t̃
[x̃, ỹ, z̃, t̃ ]T =

1

t̃
A−1[x, y, 1, t̃]

Now this gets multiplied by A giving

1

t̃
[x, y, 1, t] =

[x
t̃
,
y

t̃
,
1

t̃
,
t

t̃

]
by definition of Φ. But dropping the last two coordinates and dividing by the third leaves us
with just [x, y]. Done.

We note that if our hypothesis of real affine QSIC does not hold the result is still true interpreted
correctly in the complex projective situation. Even without this hypothesis the maps Φ,Ψ are
still useful, however Φ may not be onto.

6 Parameterizing Plane quadratics and cubics

Since a line is immediately parameterizable, our problem is reduced to finding parameter
patches for a plane cubic. We first check whether the plane cubic given by h = 0 is reducible.
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Using Algorithm 2 above with just one point we can check for proper components and, since
plane curves are solutions of single equations, components are associated with factors of the
polynomial h. Any factors can be divided out making it easier to find any other factors. Thus
we could still have to deal at this level with degree 1, 2 or 3 irreducible curves. Degree 1 is
immediate. We will assume the irreducible curve is still called h.

Suppose h = 0 is the real equation of a plane curve of any degree and p̂ is a real non-singular
point in V (h). We will first use a fractional linear transformation to move p̂ to [0, 1, 0] in P2

with the infinite line as tangent to the curve at this points. To this end we homogenize h(x, y)
to hh(x, y, z) and p̂ to p̂h, in the latter case simply by adding a third coordinate 1. We define
the normal vector at p̂h by

n =

[
∂hh
∂x

,
∂hh
∂y

,
∂hh
∂z

]∣∣∣∣∣
p̂

It is well known, eg. [11, Chapter 4], that for a projective curve hh at projective point p̂h then
then n · p̂h = 0.

Let c = n×p̂h be the cross product and, simply for better numerical stability, let n, p̂h, c be
normalized as n̄, p̂h and c̄. Set B to be the 3× 3 matrix

B =

 c̄

p̂h

n̄


Then the fractional linear transformation given by B

Θ : (x, y) 7→ B[x, y, 1]T = [x̌, y̌, ž ]T 7→ [x̌, y̌ ]/ž (6)

is our desired transformation. One should note that B is an orthogonal matrix.

Now if h is quadratic then by picking p̂ to be any point on V (h) we arrive at a parabola
y = u(x) where u(x) = ax2 + bx+ c is a quadratic in x since we have the unique infinite point
[0, 1, 0]. In fact this is a real parabola even if h or p̂ are complex.

If h is an irreducible cubic curve, possibly singular, then we pick p̂ more carefully. In principle
if h is singular we could pick p̂ to be the unique singular point. Now n = 0 so we cannot use
B above but any matrix B with B.p̂h = [0, 1, 0] would transform h into the form

y(dx+ e) = ax2 + bx+ c or y =
ax2 + bx+ c

dx+ e

giving a rational parameterization. In theory this should give satisfactory results but the
hyperelliptic form below will behave much better numerically.

To get hyperelliptic form we take the Hessian curve H of h [11, §4.4] and find the intersections
with h. As recently as 2000 when [16] was written this was computationally difficult, with
modern numerical algebraic geometry, and even Mathematica’s numerical Gröbner basis,
this is now routine. If h is irreducible and non-singular we are guarenteed at least one real
point on V (hh)∩V (H). If h is irreducible and singular but generated by the random procedure
of Theorem 1 then it is still quite likely that there be such a non-singular point. This point
will have an inflectional tangent. Using the fractional linear transformation from B above
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we move this point to [0, 1, 0] with inflectional tangent the line at infinity, call the resulting
homogeneous curve (use Algorithm 4) jh. In theory the coefficients of y3 and xy2 of jh are
easily seen to be 0, it is known [5] that the coefficient of x2y will also vanish because of the
inflectional tangent. In numerical practice these coefficients will be very tiny so we can discard
these terms. Specializing by setting z = 1 and dividing by the coefficient of y2 gives

j = ax3 + bx2 + cx+ dxy + ey + y2 = y2 + (dx+ e)y + v(x)

For fixed x setting j = 0 the quadratic equation in y on the right has two solutions which add
to −dx− e. In other words the line y = −(d2x+ e

2) lies on the midpoints of the two solutions
of j = 0 for given x, possibly complex. The fractional linear transformation given by matrix

C =

1 0 0
d
2 1 e

2
0 0 1


sends this line to the x-axis giving an equation of the form y2 = u(x) for some cubic polynomial
u(x). As in (6) the map from the h to the parameter curve is

Θ : (x, y) 7→ CB[x, y, 1]T = [x̌, y̌, ž ]T 7→ [x̌, y̌ ]/ž

A few more steps, using classical techniques actualized as fractional linear transformations,
will put y2 = u(x) in the form y2 = x3 + ax+ b for suitable real a, b. But this is not necessary
for our next step so we will not go into details here.

7 Parameterization and analysis of real QSIC

From the previous two sections we can parameterize each irreducible algebraic component of
the QSIC in one of the following ways where u is a polynomial function of t of specified degree
and the result is a rational function R1 → R3 where each coordinate has the same denominator.
The maximum degrees of numerator and denominator are given.

degree u parameterization max degrees

1 Φ(Θ−1(t, u(t))) degree 3 in t
2 Φ(Θ−1(t, u(t))) degree 6 in t

3 Φ(Θ−1(t,±
√
u(t))) degree 3 in t and

√
u

For degrees 1 and 2 we need only find the poles, i.e. zeros of the common denominator. The
QSIC is of degree 4 so unless a component lies in the infinite plane of P3 it can interesect this
plane in at most 4 points so at most 4 of these poles will be essential counting possible poles at
the ends of the parameter lines. Thus the real projective line is divided into at most 4 intervals
which would give up to 4 affine topological components. As the parameter goes to ±∞ and
poles, even the inessential ones, the parameterization may become numerically inaccurate, thus
it may be useful to use different choices and create an additional parameterization or two that
would overlap to cover finite points of the QSIC that could be misssed.
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For degree 3 the situation is more complicated as for real QSIC the domain of the parameter-
izations is only part of the real line. Further because of the square root in the denominator it
is harder to find the zeros. The first problem is easy as the domain is {t|u(t) ≥ 0} and it is
only necessary to know the zeros of u(t) to calculate this set. For the second collecting powers
of
√
u(t) one gets

v0(t) + v1(t)
√
u(t) + v2(t)

√
u(t)

2
+ v3(t)

√
u(t)

3

= v0(t) + v2(t)u(t) +
(
v1(t) + v3(t)u(t)

)√
u(t)

Setting this last expression equal to 0 gives

v0(t) + v2(t)u(t) = −
(
v1(t) + v3(t)u(t)

)√
u(t)

Squaring both sides gives(
v0(t) + v2(t)u(t)

)2 − (v1(t) + v3(t)u(t)
)2
u(t) = 0 (7)

a single variable polynomial equation which is easily solved numerically. The zeros of the
denominator are contained in the zero set of this equation, and note that this same zero set
will apply to both parameterizations y =

√
u(t) and y = −

√
u(t) but denominators will have

different zeros of (7). Combining this result with the calculation of the domain allows us to
identify the affine topological components.

One posibility not yet considered is that two algebraic components may intersect. This will
be a singular point of the QSIC Alternatively the image of a singular point in the QSIC likely
appeared as a singular point in V (h). One can identify the component curves containing this
point then use the appropriate Θ to the parameter curves. If this singular point did not show
up in V (h) it is because of a line of the QSIC not in the image of Φ, which would show up in
Step 1.

8 A fully worked out Example

In this section I do a complete example using the method outlined in the introduction. This
is one of the more complicated examples.

Consider the QSIC given by C = V ({f, g}) where

f = x2 + z2 − 2z − y2, g = 2x2 − 2xy − 2z − 3xz (8)

Step 1: Do numerical irreducible decomposition to identify complex algebraic components.

I use Bertini [2] on the system above which finds two algebraic components with non-
singular witness points (rounded to 6 significant digits for display but given by 16 signif-
icant digits).

p̂1 =(−.07985493 + .259423ı,−.07985493 + .259423ı, 0)

p̂2 =(−.0978825 + .161370ı,−.0164075 + .2438801ı, .0215337− .0120534ı)
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Bertini calculates the degree of the component containing p̂1 to be 1, thus a line, and
the degree of the other component to be 3.

The remaining steps are done with Mathematica with default precison, generally 17
digits, and linear algebra tolerance 10−12.

Step 2: For this unbounded curve we can intersect with a random real plane to get the random
real point p̂ = (1.133057,−0.5986927, 0.7268414) again rounded to 7 significant digits
but used with 17 digits in the calculations.

Step 3: I next apply Theorem 1 to the system (8) to obtain the plane cubic

h = −0.277749 + 0.471423x+ 0.0905586x2 − 0.00582857x3 + 0.129608y

− 0.0407206xy + 0.0475988x2y + 0.362871y2 − 0.0760948xy2 + 0.0966969y3

Here

A =


0.655457 0.407462 0.160413 −0.61532
0.0261099 −0.845622 −0.00374475 −0.53313
0.405925 −0.0764678 −0.898681 0.147482
0.636333 −0.33623 0.408199 0.561607


L = −0.511267x+ 0.252642y + 0.229098z

R = −0.165283x2 − 0.174560xy + 0.291000y2 + 0.506095xz + 0.400222yz − 0.252014z2

Thus from (4) the map Ψ : C → V (h) is given by

Ψ(x, y, z) =

(
α1(x, y, z)

γ(x, y, z)
,
α2(x, y, z)

γ(x, y, z)

)
where

α1(x, y, z) =− 0.61532 + 0.655457x+ 0.407462y + 0.160413z

α2(x, y, z) =− 0.53313 + 0.0261099x− 0.845622y − 0.00374475z

γ(x, y, z) =0.147482 + 0.405925x− 0.0764678y − 0.898681z

And from (5) the map Φ : V (h)→ C is given by

Φ(x, y) =

(
β1(x, y)

δ(x, y)
,
β1(x, y)

δ(x, y)
,
β1(x, y)

δ(x, y)

)
where

β1(x, y) =0.253361− 0.379418x− 0.229939x2 − 0.146139y + 0.263325xy − 0.178576y2

β2(x, y) =− 0.102253 + 0.302609x− 0.263895x2 − 0.0784822y + 0.476589xy − 0.115797y2

β3(x, y) =− 0.103014 + 0.289628x− 0.0145455x2 − 0.391273y + 0.113697xy − 0.119732y2

δ(x, y) =0.175321− 0.500598x+ 0.407417x2 − 0.309646y + 0.21515xy − 0.298119y2
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Step 4: We pick random linear form k = 0.647639x+ 0.134229y then the Jacobian Determinant
is the ellipse

J = −0.0206603 + 0.0506834x− 0.0331739x2 − 0.475485y + 0.111342xy − 0.198088y2

which intersects h in a singular point (−4.17438,−3.61523) and points
q1 = (0.537437,−0.00725009), q2 = (−6.75208,−2.73808). Applying Algorithm 1 to q1
decomposes h = h1h2 into the two curves

h1 =0.407209− 0.670328x− 0.167057x2 − 0.326707y + 0.267999xy − 0.422342y2

h2 =− 0.682079 + 0.0348897x− 0.228954y

Applying Ψ to the two points p̂1, p̂2 we find that p̂1 maps to a point on V (h2) while p̂2

maps to a point on h1. Thus Ψ respects the decompositions of C and V (h) so we can
conclude that Ψ is a numerical birational equivalence of curves C, V (h) with inverse Φ.

Step 5: Using the method of §6 we get a fractional linear transformation Θ with matrix

B =

 0.545499 0.668587 0.505394
−0.832815 0.364724 0.416408
−0.0940751 0.64805 −0.755766


which takes V (h1) to the parabola

y = 0.145433− 0.209493x− 0.322363x2 = u(x)

Then our parameterization of the second component of C is

ΦΘ−1((t, u(t)) =

(
ξ1(t)

ρ(t)
,
ξ2(t)

ρ(t)
,
ξ3(t)

ρ(t)

)
Where

ξ1(t) =− 0.00123344 + 0.116394t+ 0.0455282t2 − 0.0600163t3 − 0.0114211t4

ξ2(t) =− 0.106938 + 0.0555114t+ 0.165079t2 − 0.0241627t3 − 0.0496511t4

ξ3(t) = 0.107571− 0.116773t− 0.0431373t2 + 0.0859286t3 − 0.0247614t4

ρ(t) = 0.000638119− 0.06223t+ 0.165178t2 + 0.227341t3 + 0.0347652t4

The first component of C is easily seen to be the line y = x, z = 0. The two components
meet at the origin of R3 which is Φ of the singular point of V (h) where the two components
of V (h) meet tangentially.

Step 6: Solving ρ(t) = 0 we get {−5.64066,−1.17225, 0.010554, 0.26302}, the root t = −1.17225 is
not an essential pole but the others are. To graph the second component we need only plot
the line and ΦΘ−1(t, u(t)) on the real intervals [−100,−5.67], [−5.6, .01], [.011, .26], [.27, 5].
There is a tiny gap near the singular point (0, 0, 0) but it is not very noticible on the
graph (Figure 2).
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Figure 2: V (h) (left) and the QSIC inside −40 ≤ x, y, z ≤ 40.

I must make one further comment about this example. The algebraic component which is not
a line is of degree 3 but not planar. Thus it cannot be a complete intersection curve in C3. In
fact the surface given by

γ = 0.40756x− 0.649881x2 − 0.40756y − 0.391031xy − 0.181769y2

− 0.143229z − 0.0770954xz + 0.181769z2

is linearly independent of f, g but also contains this degree 3 component. Thus the decomposi-
tion of Step 1 is not helpful in finding a parameterization for this component. The decomposi-
tions of Step 1 and Step 4 serve different purposes, that of Step 1 identifies components to see
if Ψ is onto while Step 4 decomposes the curve into useful complete intersection components.
In this example both of these are necessary.

In [15] the classification of QSIC gives 23 of the 35 total types which are reducible with only
planar components. In these 23 cases one could go directly from Step 1 to Step 5. In some of
the other cases the QSIC is irreducible in which case the information from Step 1 allows us to
skip Step 4. But for a complete description of all QSIC we need this 6 step method.

9 More Examples

Examples have been calculated with a default of approximately 17 digits in Mathematica
8 with a numerical linear algebra tolerance of 10−12. Generally the calculations are accurate
to about 11 digits but for display only about 6 digits are shown here. It should be noted
that because a number of random choices are made in this approach that the details of these
examples can not be replicated without knowing the choices. But the point set and properties
of the QSIC obtained will be the same with different random choices.

Example 1: Generically a QSIC will be a genus 1 space curve. A typical example is V (〈f, g〉)

f = x2 + y2 + z2 − 16, g = 57− 12x+ 4x2 + y2 − 64z + 16z2 (9)
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An application of Theorem 4 gives

h = 0.0442427 + 0.140313x+ 0.116615x2 + 0.0294054x3

− 0.217169y − 0.402909xy − 0.172791x2y + 0.344722y2

+ 0.330695xy2 − 0.208248y3

Checking h there are no singularities and three real inflectional tangents two of which, pictured
below in the top lefthand plot in Figure 1, then give, using the method of §6, the two curves

y2 = 38.6067 + 16.0287x+ 6.07442x2 + 0.716794x3

y2 = −2.33478 + 1.87741x− 0.375185x2 + 0.0245423x3

both of which look like the upper right picture of Figure 3 but with very different scales. Note
these curves are both birationally equivalent to the QSIC (9) and so are birationally equivalent
to each other. Each of these curves gives two patches (positive and negative y) the the four
patches cover QSIC (9)

Figure 3: Example 1, bottom curve is QSIC

Example 2: A more complicated version of the above is the curve V (〈f, g〉)

f = x2 − y2 + z2 − 1 g = x2 − z2 − 4 (10)

The plane cubic obtained is

h = −0.0947177− 0.263213x+ 0.267739x2 − 0.0855912x3

− 0.308632y + 0.0559627xy − 0.194258x2y

− 0.122697y2 + 0.387761xy2 − 0.0316547y3

which is transformed into

y2 = −0.0029057− 0.494465x+ 0.252846x2 + 0.45218x3

= u(x)

The parameter domain is then {−1.359 ≤ t ≤ 0.00586} ∪ {0.8065 ≤ t} and the possible
zeros from (7) of the parameter functions y = ±

√
u(t) are t = −1.2287,−.05820, 0.8936,

1.347, 20.925. The values t = −1.2287, .8936 are poles of y = ΦΘ−1(t,
√
u(t)) while t =
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−.05197, 20.925 are poles of y = ΦΘ−1(t,−
√
u(t)) but t = 1.3465 turns out not to be an

essential pole of either. Thus our parameter curve breaks into 4 intervals as shown, dots are
poles, on the left in Figure 3 below. The images under y = ΦΘ−1(t,±

√
u(t))of the intervals

are the 4 affine topological components of the QSIC as shown on the right of Figure 4 after
projection by (x, y, z) 7→ (x + .5z, y). Note we used Algorithm 4 to find the equation of the
projection and plotted with a contour plot.

Figure 4: top parameter curve, bottom projection of QSIC in Example 2

Example 3: Consider curve number 6 in [15, Table 1] V (〈f, g〉) where

f = −x2 − z2 + 2y, g = −3x2 + y2 − z2 (11)

This curve has a bounded dimension 1 real component and an isolated real point. Theorem 4
gives the plane cubic

h = 0.00491366− 0.0192757x+ 0.304379x2 + 0.13571x3

+ 0.0803394y + 0.449203xy + 0.11988x2y

+ 0.661842y2 − 0.0941065xy2 + 0.0385216y3

This h also has an isolated real point which is a singular point. Letting hh be the hom-
genation of h Mathematica’s NSolve, in a rare miss, does not see the common zero x̂ =
[0.103102,−0.0989506, 1] of {∂hh

∂x ,
∂hh
∂y , hh} and also fails to identify x̂ as a multiple real zero

of the intersection of hh and its Hessian, seeing instead two close complex zeros. Thus it
is not unexpected that one may mistake h for a non-singular cubic. Since there are real
inflectional points the method of §4 gives a birational equvalence of h with y2 = 0.498 +
2.55083x+ 2.54258x2− 1.94738x3 which is a singular curve with isolated real singular point at
(−0.356012, 0). This curve maps birationally onto the QSIC (11) including the isolated point
and we get, a good parameter patch.

With the method of §4 the isolated point of both the original QSIC and h are easily found, see
the example in §4.

So h must be a singular curve but from the equation alone it is difficult in some cases to
identify whether a numerical curve is singular. Thus this suggested method which does not
treat singular and non-singular curves diffently is preferable to a method which treats them
as separate cases. The singular isolated point is more readily identified in the final y2 = u(x)
form.
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The reader should notice the difference here between working numerically and exactly. In an
exact calculation h could be a curve of the form y− v(x) in which case it would make no sense
transforming it to the cusp y2 − u(x) to get a parameterization. In our numerical case the
chance of h being of the form y − v(x) is virtually nil so it is not worth even considering that
possibility.

Example 4: The easiest example of a QSIC, the intersection of two spheres, is one not covered
by Theorem 4 as stated, since it is not an affine QSIC. for instance

f = x2 + y2 + z2 − 4, g = −2− 2x+ x2 + y2 + z2 (12)

Note f − g = 2x − 2 so the affine solution is {x = 1, y2 + z2 = 3}. However applying the
technique of Theorem 4 gave the cubic

h = 0.15022 + 0.10600x+ 0.0724682x2 − 0.00712392x3

+ 0.44953y + 0.31137xy + 0.156986x2y

+ 0.403442y2 + 0.165618xy2 + 0.206231y3

The curve V (h) is reducible with components V (h1), V (h2)

h1 = 0.448791− 0.038654x+ 0.8928y

h2 = 0.334722 + 0.265018x+ 0.1843x2 + 0.335768y

+0.195505xy + 0.230994y2

where Φ applied to the line h1 = 0 parameterizes the real affine solution circle but the quadratic
h2 has no real solutions. However Φ does not take V (h2) to V ({f, g}). Instead if we work
projectively then the projective closure of V (h2) goes to the complex ideal curve in P3 given
by {t = 0, x3 + y3 + z3 = 0} which is in the projective closure of (12).

Example 5: Another simple example is

f = x2 + y2 − 1 g = z − xy (13)

By inspection I could easily parameterize the affine real part using the unit circle by (x, y) 7→
(x, y, xy). But V (f, g) is not a plane curve and is irreducible of degree 4 as a complex projective
variety. In fact this variety has an isolated real point at infinity.

Using the method of this paper I can parameterize this curve by the singular plane cubic

y2 = −0.0573176− 0.67692x+ 0.637452x2 − 0.144568x3

with isolated real point (2.24404, 0.).

Example 6: The system {x2− y2, z2− 1} [15, curve 28] consists of 4 real affine lines and does
satisfy the hypotheses of Theorem 4 but it is impossible for Φ to be a birational equivalence
because a cubic cannot have 4 components.
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10 Conclusion

This paper shows that working numerically instead of exactly greatly simplifies the problem
and yet we are still able, in our experiments, to distinguish the different types of QSIC, even
when there are singular points involved. It is possible, of course, that very sensitive examples
may be found where our method may need higher precision or arithmetic or may fail.

Using the entire algorithm, especially Step 5, we can specialize Theorem 1 as follows:

Theorem 2 Suppose X is an irreducibe real affine QSIC, possibly singular. Then X is nu-
merically birationally equivalent to a plane cubic Y in hyperelliptic form y2 = x3 + ax+ b for
real numbers a, b.

Numerically birationally equivalent means that there are birational maps from X to Y and
back where the coefficients are floating point reals rather than rational numbers. It is still a
question in my mind as to what algebraic -geometric data is preserved by such an equivalence.
As a former pure mathematican I am tempted to answer “very little”. Yet the more I work
with these numerical methods the more I am impressed with the power of them.
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