Combinations in Probability

First recall that n ! is the product of the first n integers, eg. $4!=4 * 3 * 2 * 1$. For the TI83/4! can be found on the MATH PRB menu. First enter n then get !

The number of combinations of n things r at a time is denoted ${ }_{n} C_{r}$. One starts with a set of n items then forms the set of all possible subsets with r elements. The number of elements in this set is ${ }_{n} C_{r}$ For example if $S=\{a, b, c, d, e\}$ then $n=5$ and if $r=2$ we have the set

$$
\{\{a, b\},\{a, c\},\{a, d\},\{a, e\},\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, e\},\{d, e\}\}
$$

So ${ }_{5} C_{2}=10$. The formula is

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{r(r-1)(r-2) \ldots(1)}
$$

Note the numerator and denominator have the same number of terms. Further all terms in the denominator can be cancelled so we always get an integer. For example

$$
{ }_{5} C_{2}=\frac{5!}{(5-2)!2!}=\frac{5 * 4 * 3 * 2 * 1}{(3 * 2 * 1)(2 * 1)}=\frac{5 * 4}{2 * 1}=5 * 2=10
$$

Another way of finding ${ }_{n} C_{r}$ for small n, r is to use Pascal's Triangle on the right. Each row represents one n which is the second entry in the row. The numbers in the row are then ${ }_{n} C_{r}$ starting from $r=0$ on the left to $r=n$ on the right. The top entry is ${ }_{0} C_{0}=1$ and the outside entries are ${ }_{n} C_{0}={ }_{n} C_{n}=1$ and the other entries are the sum of the two

					1					
			1		1					
			1		2		1			
		1		3		3		1		
	1		4		6		4		1	
1		5		10		10		5		1

Of course the usual way to calculate ${ }_{n} C_{r}$ is to use the ${ }_{n} C_{r}$ key from the MATH PRB menu: first enter n then get ${ }_{n} C_{r}$ from the menu and then enter r. If you will be multiplying this number the entire ${ }_{n} C_{r}$ should be in parentheses, eg. $\left(10{ }_{n} C_{r} 2\right)$. Outside probability ${ }_{n} C_{r}$ is written $\binom{n}{r}$.

Application 1: 10 marbles are in a can, 5 red 3 blue and 2 white. Two are picked together (no order). What is the probability of 2 blue? Of a red and a white? Answer: Think of the marbles of a given color as being numbered. Any pair is equally likely and the number of pairs is ${ }_{10} C_{2}=45$ Since there are 3 blue marbles there are ${ }_{3} C_{2}=3$ pairs of blue marbles, hence $P(2$ blue $)=3 / 45=1 / 15=0.0667$ But there are $5 * 2=10$ pairs of one red and one white marble so $P($ red, white $)=10 / 45=2 / 9=0.222$

Application 2: What is the probability of a flush (5 cards of the same suit) if a poker hand of 5 cards is dealt from a standard deck? Answer: There are ${ }_{52} C_{5}=2598960$ possible poker hands. Each suit has 13 cards so there are ${ }_{13} C_{5}=1287$ flushes of that suit, or $4 * 1287=5148$ possible flushes. Hence P (flush) $=5148 / 2598960=.00198$ or about 1 in 505 deals.

