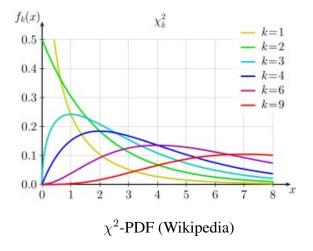
χ^2 based tests

The χ^2 (chi-square) distribution is obtained by taking the sum of *d* independent standard normal distributions squared, that is

$$\chi^2 = Z_1^2 + Z_2^2 + \dots + Z_k^2$$

The parameter k is called the "degrees of freedom", a phrase in statistics which is often used as a parameter for families of distributions. Here k is actually the mean of the χ^2 distribution of d degrees of freedom. This distribution is often useful for modeling discrete statistical phenomena.



 χ^2 Goodness of fit (GOF) test Suppose in a population we expect certain frequencies, $E_i \neq 0$ of a discrete variable with n possibilities when we take a sample of size N. In an actual sample of size N we have observed frequencies O_i and we wish to see if the difference can be attributed to normal sampling error. We calculate

$$\chi^{2} = \frac{O_{1} - E_{1}}{E_{1}} + \frac{O_{2} - E_{2}}{E_{2}} + \dots + \frac{O_{n} - E_{n}}{E_{n}}$$

We then test the null hypothesis $H_0: \chi^2 = 0$ using the χ^2 distribution with the number of *free* variables, often k = n - 1. Then $p = \chi^2 CDF(\chi^2, E99, k)$. Here we are more worried about Type II errors so we use large α . If p is large this is a case where we would actually *accept* H_0 , even though $\chi^2 = 0$ is impossible in practice, meaning that the difference is completely explained by sampling.

On some TI83/84 calculators the χ^2 -GOF is included, otherwise one can calculate χ^2 as above and use the χ^2 cdf which is available on all TI83/84 to find p.

Independence of Contingency Tables We can apply the GOF test to a contingency table such as the one on the left which we test against the independent table with same row and column numbers on the left.

	Table O	А	В	С	total	Table E	Α	В	С	total
	D	8	5	3	16	 D				
	E	12	7	5	24	E	12	7.2	4.8	24
_	total	20	12	8	40	 total	20	12	8	40

The 6 cells not including totals in Table O are the observed frequencies while the 6 non-total cells in Table E are the expected frequencies. The χ^2 GOF test is used with k = 2 since once two cells are filled in the others can be calculated from the row and column totals. If the null hypothesis $H_0: \chi^2 = 0$ gives a large *p*-value then Table O is considered to be *independent*, which is true in this example as p = 0.98. When $p < \alpha$ the table would be *dependent*.

All TI83/84 have a χ^2 -Test which works by using a Matrix to store the non-total cells of Table 0. Table E is calculated by this test and returned to a matrix of your choice. The test calculates k and p.