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ABSTRACT. Several facts about SKO and SK1 are presented, both for

commutative rings and schemes. If A is the homogeneous coordinate
ring of a projective variety over a field k, then Pic(A), SKO(A)

and SKl(A) are naturally modules over the ring W(k) of Witt vectors
over k. If A 1is any commutative ring, NPic(A), NSKO(A) and
NSKI(A) are naturally modules over W(A). The K-theory transfer map,
defined when B 1is an A-algebra which is a finite projective A-module,

sends SKO(B) to SKO(A) and SKI{B) to SKI(A).
0. INTRODUCTION
The main goal of this paper is to prove that if A is the homogeneous
coordinate ring of a projective variety over a field k, then
0 — SK (A) — K, (A) 5 Pic(A) — 0

is a short exact sequence of modules over the ring W(k) of Witt
vectors of k. Here KO(A) is the kernel of the rank function from
KO(A) to the ring HO(A) of all continuous functions spec(A) — Z,

and SKO(A) is the kernel of the map

1Suppnrted by NSF grant DMS85-3018.
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det: K (A) — Pic(A).

(See [Bass, IX.3], where K (X) is called Rk).) Since A is
graded, ﬁO(A) has a natural W(k)-module structure by [Wmod], so the
main content of this result is that the map det: ﬁO(A) — Pic(A)
endows Pic(A) with the structure of a module over the ring W(k).

In order to prove this result, we needed to use the following
fact: if an A-algebra B is a finitely generated projective A-module,
then the transfer map KO(B) — KO(A) takes SKO(B) to SKO(A). To
our surprise, we could not locate this result in the literature. We
could also not locate the well-known fact that projective modules of
rank n and determinant 1 may be obtained by patching free modules
by matrices in SLn'

Even the fact that SKO(A) is an ideal of the ring KO(A) was
hard to locate, although it is easy to prove using the splitting
principle. Another proof is to observe that SKO(A) is the subgroup
F2(A) in Grothendieck's v-filtration

. C F3(a) c Fla) = K,(4) € FO = (A

(See theorem 5.3.2 of [SGA6, Exposé X] or [FL, p. 126]). Since the
Fi(A) are ideals in the ring KO(A), it follows that SKO(A) is an
ideal.

We have therefore decided to err on the side of completeness, and
have organised our paper as follows. In the first three sections we
consider the transfer map. Let B be an A-algebra which is a finitely

generated projective A-module, so that the transfer map
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T Ki(B) S Ki(A) is defined. In section 1 we show that T, takes

EO(B) to ﬁO(A); in section 2, we show that T, takes SKI(B) to
SKI(A). In section 3, we show that T, takes SKO(B) to SKO(A)
using the above result about SK1 and a patching interpretation of
SKO we have relegated to the appendix.

All of the above results apply more generally to finite scheme

maps w: X — Y such that W“UX is a locally free OY-module. For
such maps, T, 1s an exact functor from locally free OX-modules to

locally free OY-modules, so that the transfer map L Ki(X) —_ Ki(Y)
is defined. In this paper, we have focussed as much as possible on the
ring-theoretic results, because they are less 'hi-tech’' than their
scheme-theoretic analogues.

One interesting scheme-theoretic implication of these results is a
simple Riemann-Roch type theorem (in the formalism of [FL]): for every
finite map m: X — Y of schemes with 7.0 locally free, the diagram

% X
(rank.det)

K4 (X) » HO(X,Z) @ Pic(X)

T l Tie

Ky(v) —r2nk.det) , 0(y 7) o pic(y)

commutes. (See (3.4).)

In 84 and §5 we prove our module structure results, which
clarify the results in [Swan, §8]. Our general result is that if
A=R® A1$ ... 1is a graded commutative ring, then Pic(A.A+) is a
W(R)-module, and if S CR is a multiplicatively closed set, then

Pic(S'A.STIA) 1s W(ST'R) @ Pic(A.A,).
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In 86 we extend the above results from the subgroup SKO

defined by Fulton and Lang in [FL,

of K0

to the subgroups FLDKO of KO
p.120]. We would like to thank C. Pedrini for pointing out that our
methods could be applied to the groups in the Fulton-Lang filtration.

Finally, we have included an appendix on patching vector bundles,
because we need some patching results we cannot find in the literature.
For example, if P 1is a vector bundle on X with det(P) € Pic(X)

trivial, then we can obtain P by patching free modules on an open

cover (U} of X via matrices in the SLn(U ny).

1. TRANSFER AND ﬁo

When A. is a commutative ring, KO(A) is naturally the direct sum of
KO(A) and HO(A). When B 1is a commutative A-algebra which is a
finite projective A-module, the transfer map LK KO(B) — KO(A) need

not send HO(B) to HO(A) because [B] € KO(A) need not belong to

HO(A). However, it always sends KO(B) to KO(A):
1.1. Proposition: If B 1is a commutative A-algebra which is a finite

projective A-module, then the transfer map L KO(B) - KO(A) sends

KO(B) to KO(A). and there is a commutative diagram

@) X2k LBy —— o0

e [ |

0 ———— Ky(A) ——— K (A) 22K 100y — 0,

0 — — ﬁo(B) — K,

. 0 ank 0
where NB/A is the composite H (B) C KO(B) ——;;» KO(A) 2 .o (A).
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Proof: It is enough to show that for every § € §O(B) the function
rank(w £): spec(A) — Z

is zero at every prime ideal p of A. The rank of W*E at p is
the value of (w £) ®, Ap in Ko(Ap) 2 Z. Since w_ 1is natural with
respect to localization, (m. ) @A Ap = (wp)*(f @A Ap). where

(wp)*: KO(B ®A Ap) - Ko(Ap). On the other hand, § @A Ap = 0 because
KO(B @A Ap) is zero, B @A Ap being a semilocal ring. Hence

rank(v*f) =0 at every p. 8]

1.2. Remark: ([Bass, p.451]). The hypothesis that B be projective
may be weakened to assume that B € H(A). That is, the A-module B

has a finite resolution by finite projective A-modules.

Since the proof of (1.1) is scheme-theoretic, it also proves the
analogous result for schemes, which we now formulate. Let #: X — Y
be a finite map of schemes such that v*Ox is a locally free
OY—module. Then 7 1is locally spec(A) — spec(B), where B is a
finite projective A-module, and the transfer map w_: Ki(X) - Ki(Y) is

*

defined.

1.3. Proposition. If #: X —Y 1is a finite map of schemes such that
W*Ox is a locally free OY—module, then w_ sends KO(X) to KO(Y).

and there is a commutative diagram

~ 0
0 — Ky(X) — Ky(X) — H(X.Z) — 0

lw* lﬂ* lw*

~ 0
0 — Ky(Y) — Ky(Y) — H'(Y.Z) — 0.
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1.4. Remark: There is also a transfer map T KO(X)'—» KO(Y)

defined for proper maps w: X — Y of finite Tor-dimension [SGA6].
These will not usually send iO(X) to §O(Y). For example, let k be
a field and set Y = spec(k), so that K,(Y) =0 and Ky(Y) 2Z on
generator [k]. If X = Pi, then iO(X) = Z on the class of

£ = [0x] - [0X(-1)]. but w () = [k]., which has rank 1. Similarly,
if X =P, then SKo(X) X Z, and the ctransfer m,: K (X) — K (k)
sends SKO(X) isomorphically onto Ko(k). In this case T, does not

even send SKO(X) to go(k).

2. TRANSFER AND SKl

When A 1is a commutative ring, KI(A) = GL(A)/E(A) 1is the direct sum
of A*. the units of A, and the group SKI(A) = SL(A)/E(A). [Bass,
V.2]. When B 1is an A-algebra which is finitely generated and
projective as an A-module, then one can define both the norm
homomorphism NB/A: B* — A* and the transfer homomorphism
L% KI(B) — KI(A)'

The transfer homomorphism may be defined as follows [Milnor,

p.138]. Embed B 1in some Ad as a direct summand. This gives an

embedding of groups for each n:
GL_(B) — Aut, (B") — Aut, ((AY)™) = cL__(a)
n A A T Tnd\tY

The transfer map is obtained by abelianizing and taking the direct
limit as n — ©. The norm map may be defined by the formula

Np/p(b) = det(mb) for b €B". (See [Milnor, 14.2].) The following
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simple example shows that T does not always send the subgroup B

of KI(B) to the subgroup A of KI(A)'

2

2.1. Example: Let A = R[x,y]/(x2+y = 1) and let

1

R

B=A @m Cc

of B as an A-module, t has the matrix

C[t.t "] where t = x - iy. Relative to the basis (1.1)

T (t) = [_;‘ 3’( ] € SL,(A).

In fact, this matrix represents the non-trivial element of
SKI(A) =2 Z/2 by [Milnor, 13.5] showing that W*(B*) is not contained

in A*.

2.2. Theorem: If B 1is a commutative A-algebra which is a finitely
generated projective A-module, then the transfer homomorphism T
sends SKl(B) to SKI(A). and there is a commutative diagram

0 —— SK (B) —— K, (B) —22%, B » 0

L l T N

0 —— SK, (A) —— K, (A) 325, 4 » 0.

Proof: It is enough to see that NB/A(deth) = detA(W*g) for every
g €K (B). If B is semilocal, so that K, (B) B, this follows
from the formula for NB/A' In general, suppose given g € KI(B) and

consider the ratio
%
u = NB/A(deth)/detA(v*g) €A

For each maximal ideal m of A, Bm is a finite projective
Am-module. and the determinant, norm and transfer maps are natural with

respect to this base change. Consequently, if 8n € KI(Bm) denotes
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the image of g then the image of u in A: is
u = NB /A (detB (gm))/detA ("m*gm)'
m “m m m

Because Bm is semilocal, u, = 1. Hence annA(u—l) is not contained

in any maximal ideal of A, i.e., u 1. o

2.3. Corollary: If B is a direct sum of Ad. then the map

GL (B) —GL ,(A) sends SL (B) to SL_,(A).

2.4. Remark: More generally, whenever w: A — B is such that

B € H(A), 1i.e., the A-module B has a finite resolution

O —P — . .. > P
n .

with the Pi finitely generated projective A-modules, then the
transfer map w_: KI(B) — KI(A) is defined [Bass, p. 451]. If we

. R * _
define NB/A' B — A to be NB/A(b) = det(w _b), then the proof of

2.2 goes through to show that 7, takes SKI(B) to SKI(A).

It should not be surprising that Theorem 2.2 generalizes to
schemes, since the proof uses local rings. The analogue for a scheme
X of the units in a ring are the global units, i.e., the group
HO(X.OX*). Since OX* is the sheafification of the presheaf
U KI(U)' there is a natural map

det: K (X) — HO(X:0,7).
If SKl(X) denotes the kernel of det, it is easy to see that

~ 10 %
K (X) 2 H'(X,0,7) ® SK, (X).
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2.5. Theorem: Let w: X — Y be a finite map of schemes such that

T 0y 1s locally free. Then w: KI(X) - Kl(Y) sends SKI(X) to

»

*'X

SKI(Y). and there is a commutative diagram

O—)SK(X)—»K(X) H(XO )-—)O
T lu
O-—»SK(Y)—»K(Y) H(Y0 )—-——)0
Proof: For each point y € Y, the semilocal ring OX y is finite and

projective as an OY y—module. so the proof of 2.2 goes through.

3. TRANSFER AND SKO

In this section we prove the following result. Let B be a finite
A-algebra which is projective as an A-module. Then T, sends SKO(B)
to SKO(A). and the induced map from Pic(B) to Pic(A) sends L to
detA(L)/detA(B). When cloaked in scheme-theoretic guise, the result is

as follows:

3.1. Theorem: Let 7: X — Y be a finite map of schemes such that

W*OX is locally free. Then ! KO(X) — KO(Y) sends

SKO(X) — SKO(Y), and there is a commutative diagram

0 —— SK,(X) —— KO(X) det, pic(x) —— 0

N ¥

0 —— SK,(Y) —— K (¥) <25 Pic(Y) —— O.

where Pic(X) — Pic(Y) sends a line bundle L on X to

-1
detY(L) ® detY(OX)
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For expositional reasons, we first consider the case in which
X = Spec(B), Y = Spec(A) and B is a free A-module of rank d. In

this case the result looks like this:

3.2. Corollary: Let w: A— B be a map of commutative rings such

that B = A as an A-module. Then T, Ko(B) —Ky(A) sends SK (B)

to SKO(A). and the induce map Pic(B) — Pic(A) sends L to
det, (L) = AL.

Proof of 3.2: Every element of SKO(B) can be written as

§ =[P] - [Bn] for some rank n projective B-module P satisfying
det(P) = B. Since m(E) = [P] - [A™]. and 7 (F) € Ky(A) by 1.1,
we only have to show that AndP = A. By A.3 there is a covering

A = {spéc(A[s—l])} of spec(A) so that the B-module P is obtained
by patching the modules (Bn[s-l]) via matrices

8., € SL_(B[s"'.c™']). Embedding SL (B) in SL_.(A) via 2.3, we
see that the A-module P is obtained by patching {A[s_l]nd} via
matrices in SLnd(A[s-l.t—l]). As det(P) is obtained by patching
{A[s-l]} via the determinants of these matrices, this implies that

A"p = A as desired. o

3.3. Remark: The above proof may be modified to prove 3.1 in the
general affine case, i.e., when B 1is a projective A-module. However,
we cannot be as naive about patching. The transfer SLn(B)'—9 SLnd(A)
of 2.3 sends patching data for the B-module P to patching data for
an A-module of the form P ® Q, and sends patching data for B" to

patching data for the A-module B" @ Q. Since
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det(P 8 Q) = det(Bn ® Q) = A, we have
T (E) =[P]-[B"]=[P®Q]-[B"®Q] ¢ SKy(A).

Such a proof will not work in the scheme case, however, because in

general the vector bundle .0y on Y cannot be embedded as a summand

X
of a free OY—module. Therefore, we leave the details of this remark

to the reader.

Proof of 3.1: Every element of SKO(X) can be written as

€ = [P] - [P']. where rank(P) = rank(P') and det(P) = det(P').
Adding line bundles to P and P', we can assume that det(P) is
trivial. Replacing X by a component of X if necessary, we may
assume that P and P’ have constant rank n on X. As Y is a
disjoint union of components on which rankY(w*OX) is constant, we can
restrict to such a component to assume that ”*OX has constant rank d
on Y. Choose an open cover U of Y so that: (1) the vector bundle
"*OX on Y 1is obtained by patching free modules on the U in 4 via
matrices BUV € GLd(U NV); (2) the vector bundles P and P' are
obtained by patching free modules on the w—l(U) via respective

matrices

. -l
gyy By € SLn(0X|v (U Nnyv)).

Such a cover exists by A.3. Our task is to analyse the vector bundles
P and T.P' on Y in terms of this data.

On each U, the trivializations of P and W*OX yield an
isomorphism w P|U = OUnd. On UNYV, the two trivializations of

W*Ox yield two embeddings
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-1
e SLn(Oxlw (UNV)) —SL (0 6 y)-

which differ by conjugation with the matrix

oy = diag(BUV.BUV,....BUV) € GLnd(oU n V).
The vector bundle T P on Y is.therefore obtained by patching the

free modules OUnd via the matrices

ylggylagy = agytyleygy) € GLog(0yny)-

Hence det(v*P) is obtained by patching the 0U via the units

det(cv(gUV))det(aUV) = det(aUV).
Similarly, det(v*P') is obtained by patching the OU via the
det(aUV). It follows that det(ﬂ*P) z det(w*P'). i.e., that
& = [7 P] - [v,P'] has trivial determinant, i.e., that

£ € SK(Y). o

Theorem 3.1 implies a simple Riemann-Roch theorem for finite
maps of schemes with v*Ox locally free. To state this result, we
adapt the formalism of [FL, Ch. II]. Let € be the category of

schemes and finite maps with .0

X locally free. Set

A(X) = Ky(X)/SK (X) = H(X.Z) ® Pic(X).

Since SKO(X) is an ideal, A(X) is a quotient ring. If 7: X — Y
is a map in €, then T KO(X) - KO(Y) induces a map

T.: A(X) — A(Y) by Theorem 3.1, and
p = (rank,det): KO(X) — A(X)

yields a Riemann-Roch functor in the sense of [(FL., p. 28]. By
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construction, the diagram
Ko(X) 2— 10(x.2) ® Pic(x)

l Ty T

Ko(Y) 22— HO(Y,2) ® Pic(Y)
commutes for every map w: X — Y in €, which is to say:

3.4. Theorem: The Riemann-Roch Theorem holds for finite maps ¥ with

W*UX locally free, relative to (KO.(rank.det),HO ® Pic).

4. SKO OF A GRADED RING

Let A=R® Al ® A2 ® ... be a commutative, graded ring, and let A+
denote the graded ideal A1 ® A2 ® ... . If F 1is any functor from
commutative rings to abelian groups, we write F(A.A+) for the kernel
of F(A) — F(R) induced from R = A/A+. so that
F(A) = F(R) ® F(A.A+).

For example, it is an elementary exercise to see that all
idempotents in A belong to R, so that HO(A) = HO(R) and
HO(A.A,) = 0. From this it follows that Ky(A.A,) = K (A.A,) and that

there is a short exact sequence of abelian groups

det ..
() 0 —— SK,(A.A,) —— K,(A.A,) — Pic(A,A) — 0.

In [Wmod]., it is shown that KO(A,A+) is naturally a continuous
module over the ring W(R) of Witt vectors of R. Here is our

extension of that result.
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4.1. Theorem: Let A =R ® A1 ® ... be a commutative, graded ring.
Then the groups SKO(A,A+) and Pic(A.A+) are naturally continuous
W(R)-modules in such a way that (%) 1is an exact sequence of
W(R)-modules.

If R contains the rational numbers, then SKO(A.A+) and
Pic(A,A+) are naturally R-modules, and (%) 1is an exact sequence of

R-modules. (In this case, W(R) is an R-algebra.)

Proof: It is enough to show that the subgroup SKO(A.A+) of the
W(R)-module KO(A.A+) is closed under multiplication by W(R). As
pointed out in [Wmod, 1.2], it is enough to show that SKO(A.A+) is
closed under multiplication by the elements (1 - rtm) € W(R) for all
r€R and m > 1.

Fix r € R and m > 1. An additive functor F: P(A) — P(A) was
constructed in [Wmod, 1.5] such that the induced map
KOF: KO(A) - KO(A) is multiplication by m on the summand KO(R)
and multiplication by (1 - rtm) on the summand KO(A.A+). We need to

show that KOF sends SKO(A.A+) to itself; since
SKO(A.A+) = KO(A.A+) n SKO(A)

it is enough to show that KOF sends SKO(A) to itself.
Set S =R[s]/(s" -r), and let 0: A®S —A®S be the
S-algebra map sendng a, ®1 in Ai ®S to a; ® si. If

J: A— A ®S denotes the natural inclusion, then the composition
P(A) —L— P(A 8 5) -2 P(A ® 5) 2%, p(a)

is the functor F [Wmod, 1.4]. Since SKO is natural, j*b* = (oj)*
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sends SKO(A) to SKO(A ® S). By 3.2 above, the transfer map
AL KO(A ®S) — KO(A) sends SKO(A ®S) to SKO(A). Consequently,
the composition KiF sends SKO(A) to SKO(A). proving the result.

a

4.2. Remark: Multiplicaton by (1 - rtm) on Pic(A.A+) sends a rank
1 projective A-module L to Am(L @A P), where P 1is the A-bimodule

defined in [Wmod, p. 468].

Two special cases of 4.1 are worth isolating. The first covers
the case in which A is the homogeneous coordinate ring of a connected

projective variety over a field.

4.3. Corollary: If k is a fieldand A=k @ A1 0 A2 ®... is a
commuta%ive. graded k-algebra, then SKO(A) and Pic(A) are naturally
W(k)-modules, and

det

0 —— SK,(A) —— K (A) —225 Pic(A) —— 0

is a short exact sequence of W(k)-modules. When char(k) = O, they

are naturally vector spaces over k, and det is a k-linear map.
Proof: In this case Ko(k) =0, so KO(A) = KO(A.A+). ]

4.4. Corollary: If R 1is a commutative ring, then NSKO(R) and

NPic(R) are naturally W(R)-modules, and
0 — NSKO(R) —_— NKO(R) —— NPi¢c(R) —— O
is an exact sequence of W(R)-modules.

Proof: This is 4.1 when A = R[x]. o
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4.4.1. Remark: This explains [Swan, 8.2], which points out that if
1/m € R then NPic(R) is a Z[1/m]-module, while if mA = O then
NPic(R) is an m~torsion module. This is true of all
W(Z[1/m])-modules, resp., of all continuous W(Z/mZ)-modules. The
corresponding result for NU(R) is a consequence of the W(R)-structure

on NU(R) given either in [WNK, 5.1] or Theorem 4.5 below.

1 If A=R® Al ® ... is

graded, and nilA+ denotes the ideal of nilpotent elements in A+,

Let us now turn to a quick study of K

then it is well known that

A =R @ (1+ nila )™

. »
(36¢) KI(A.A+) = (1 + nilA )" @ SKI(A.A+).
(Cf. [Bass. XII.7.8].) The group KI(A.A+) is a W(R)-module, and we

have

4.5. Theorem: Let A =R ® Al ® ... be a commutative, graded ring.
Then (1 + nilA)” and SK)(A.A,) are W(R)-submodules of K (A.A,).

In particular, (%) gives a W(R)-module decomposition of Kl(A.A+).

Proof: 1If we cite 2.2 in place of 3.2, the proof of 4.1 applies
to prove that SKI(A.A+) is a W(R)-submodule. To see that
(1 + ni1A+)* is also a W(R)-submodule, we can consult the explicit

formula 5.1 in [WNK]. Alternatively, if B denotes A/nilA_, then
SK,(A.A)) = SK,(B.B,) = K,(B.B,)

[Bass, IX.1.3]. Hence the inclusion of SKI(A.A+) in Kl(A.A+) is

split by the map to Kl(B.B+). o
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4.6. Theorem: Let R — S be a map of commutative rings, and let I
be an ideal of R mapped isomorphically onto an ideal of S. Then the

following diagram is exact, and all maps are W(R)-module homomorphisms:

0 —— NSK; (R) —————— MK, (R) » NU(R) ——— 0

| l

0 — NSK| (S)@NSK| (R/T) —— NK, (S)8NK, (R/I) —— NU(S)@NU(R/I) — O

0 —— NSK, (S/1) ————— NK, (S/1) » NU(S/I) ——— 0
al 3| 3
0 — NSKO(R) 3 NKO(R) — NPic(R) —— 0

l l

O - NSK(S)8NSK,(R/T) —— NK,(S)8NK (R/I) — NPic(S)@NPic(R/T) = O

L

0 — NSK,(S/1) — NK,(S/1) » NPic(S/1) —— 0.

Proof: This is the exact diagram of abelian groups on p. 490 of
[Bass]. All the groups are W(R)-modules and the horizontal arrows are
W(R)-module maps by 4.4 and 4.5. Every vertical arrow except those
labelled 8 are W(R)-module maps by naturality of the module
structure. It is therefore enough to show that NKl(S/I) — NKO(R) is

a module map. But this map is the composite of the maps
NKI(S/I) — NKO(S.I) = NKO(R.I) —_ NKO(R).

and these maps are W(R)-module maps by [WNK, 3.5]. o

Remark 4.6.1. If A — B 1is a map of graded rings, A=R @ Al e ...,
and I is graded, then there is a similar theorem for the W(R)-modules

Ki(A.A+). etc., which we leave to the reader.
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0 1

5.  LOCALIZATION

In this section, we study the effect of localization on NKO(R) and
NK,(R). For a multiplicative set S in R, let [S] denote

{(1-st) € W(R): s € S}. This is a multiplicative set because
(1-rt)*(1-st) = (1-rst) in the ring W(R). We shall use the following

result of Vorst:

5.1. Theorem: (Vorst) If n ¢ 2 then for every S:

124

NK_(sT'R) = [17'NK_(R) = W(sTIR) ® NK_(R).

W(R)
If R 1is a Q-algebra, so that NKn(R) is an R-module, or if S C Z,

this group also equals S—lNKn(R).

Proof: See [Vorst, 1.4], [vdK, 1.6] and [WNK, 6.8]. If M is any
continuous W(R)-module, then [S]-IM is the same as W(S-IR) ®M by

[WNK, 6.2]. o

Here is an easy application of 5.1, using 4.5 with A = R[t].
Consider the following diagram of W(S_IR)-modules, whose rows are

exact:

0 —s [S]—INSKI(R) —— [817}NK, (R) — [T 'NUR) —> 0

0 — NsK, (S”'R) » NK (ST'R) —— NU(STIR) —— 0
i l
-1 = -1
NSK; (§TRq) ——— MK, (STR__,)

| -

[ST7NSK) (R, ) —— [T (R__)

Since NSKI(R) = NKI(Rred)' a diagram chase proves:
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5.2. Corollary: For every multiplicative set S of the ring R

NSk, (s7'R) = [S17'Nsk, (R) = W(ST'R) @ NSK, (R):

NU(sT'R) = [s77INUGR) = w(s~IR) @ NU(R).

If R is a Q-algebra, or S CZ, these groups also equal S_INSKI(R)

and S_INU(R). respectively.
Remark: The result for SCZ and NU is classical. (See [SGA6].)

5.3. Theorem: For every multiplicative set S

e

NSK(s™'R) [S]-INSKO(R) = w(s!r) @ NSK,(R):

w(s™!R) ® NPic(R).

IR

NPic(ST'R) = [S]”!NPic(R)

IR

If R is a Q-algebra, or S C Z. these groups also equal S_INSKO(R)

and S—lNPic(R). respectively.

Remark: The case S C Z was proven in [Swan, 8.1]. Theorem 5.3
supplies the answer to Swan's problem of formulating that result in

greater generality.

Proof: We shall follow Swan's proof in op. cit. We can assume that R

is reduced as KO(R) = KO( etc. Since all functors under

Rred)'
consideration commute with filtered colimits of rings, we may assume R
is a finitely generated Z-algebra, and hence that the normalization R
of R is finite over R. Let I be the conductor ideal from R to

R: since R 1is finite, I lies in no minimal prime of R or R, so

that R/I and R/I have lower Krull dimension. We wish to consider

the K-theory exact sequences resulting from the conductor square
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R—m— &R

|

/I — ®R/1,
and from its localization at S. Since R and S—lﬁ' are reduced and
normal, NPic(R) = NPic(S™R) =0 and NU(R) = NU(S™'R) = o.
Localizing the right-most exact column of W(R)-modules in 4.6 at

[S]. we have the map of exact column sequences of [S]_IW(R)—modulesi

is1 vurny) —=— NUlS_IR/I)

s17vuRny —=- nues i)

[S1”INPic(R) —> NPic(s™IR)

<

[S17'NPic(R/T) - NPic(s™IR/1)

[S17INPic(R/I) = NPic(S™'R/1).

The top two isomorphisms are from 5.2. Inductively, we may assume
Theorem 5.3 proven for all finitely generated Z-algebras of lower
Krull dimension than R (the result being trivial if dim(R) = 0).

Thus the bottom two horizontal arrows are isomorphisms by induction.

The 5-lemma now proves that [S]—INPic(R) = NPic(S-lR). The result for
NSK0 follows from the exact diagram

0 — [8]7'NsK,(R) — [S17'MK,(R) — [S] 'NPic(R) — O

0 —— NsK,(S™'R) —— NK,(STIR) —— NPic(s™IR) — 0.

o
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6. THE FULTON-LANG FILTRATION ON KO

In this section, we extend the results of the preceding sections to the
subgroups FLnKO(A) of KO(A) defined by Fulton and Lang in [FL, V.3]
for commutative rings.

If A 1is a commutative Noetherian ring, FLnKO(A) is defined to
be the set of all w € KO(A) such that for every finite family {Zj}
of closed subsets of Spec(A) there is a bounded complex of finite
projective A-modules

PP 0o— P _p*l .,  _L,pP_ o

such that o = E (—l)i[Pi] in KO(A). and

codin(Z, N supp(Hi(P)).ZJ.) >n for all i and j.

From [FL, V.3] we see that the FLnKO(A) are functorial in A,
FLIKO(A) = KO(A) and FL2KO(A) = SKO(A). Therefore, we can define
FLnKO(A) for any commutative ring A\ to be the direct limit of the

FLnKO(Aa) over all noetherian subrings Aa of A.

6.1 Theorem: If B 1is a commutative A-algebra which is a finitely
generated projective A-module, then the transfer map KO(B) — KO(A)

sends FLnKO(B) to FL“KO(A) for all n.

Proof: The usual direct limit argument shows that we may assume A
and B noetherian. Suppose given an element o € FLnKO(B) and a
finite family {Zj} of closed subsets of Spec(A). Then {w-llj} is
a family of closed subsets of Spec(B). Choose a bounded complex P

of finite projective B-modules such that w = z (-l)i[Pl] and for all
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0] 1

i and

codim(w-lz n suppB(Hi(P.))) 2 n.

J

If Pz denotes Pi. regarded as a finite projective A-module, then

T (v) = E (—l)iv*[Pi] = z (-l)i[Pi]. By the Going Down theorem,

. i . -1 i
codlm(Zj n suppAH (PA)'Zj) = codim(w "Z, N suppBH (P)) 2 n.

J
Hence = (w) € FLnKO(A) as desired. o

Fulton and Lang also define FLnKO(X) for any noetherian scheme
with an ample line bundle, in particular for quasiprojective varieties.

The same proof yields the following result.

6.2 Theorem: Let w: X — Y be a finite map of noetherian schemes
with ample line bundles. Suppose that W*OX is a locally free
OY-module (ie. that w is flat). Then the transfer map

n
T Ky(X) — K, (Y) sends FL“KO(X) to FL'K,(Y) for all n.

6.2.1 Remark: This provides another proof of Theorem 3.1 for

noetherian schemes with ample line bundles.

Now we turn to module structures. The proof of Theorem 4.1

actually proves the following result:

6.3 Theorem: Let S(A) be any subgroup of K*(A). defined for all

commutative rings A, such that the conditions

(i) any commutative ring map A — B sends S(A) to S(B)

(ii) if B 1is a commutative A-algebra which is a finite projective
A-module, then the transfer map K .(B) — K _(A) sends S(B) to
S(A)
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both hold. Then, for any commutative, graded ring A =R @ Al e ..

the group S(A,A|) is a continuous W(R)-submodule of K (A.A).

6.4 Corollary: Let A =R ® A1 ® ... be a conmutative graded ring.
Then the groups FLnKO(A.A+) are naturally continuous W(R)-submodules
of KO(A.A+). In particular, if R contains the rational numbers,

then FLnKo(A.A+) is naturally an R-module.

We leave the analogues of 4.3 and 4.4 to the reader, as well as
the analogue of 5.3 for noetherian R (the proof of 5.3 does not

apply, but arguments of [Vorst] do).

APPENDIX. PATCHING VECTOR BUNDLES

It is well known that a rank n vector bundle P on a scheme X may
be obtained by patching free OU-modules on some open cover U = {U} of

X wvia matrices € CLn(U NV) oneach UNV. If P is given by

Suv
this data, the determinant line bundle A"P is formed by patching the
OU together via the units det(guv), so if each gy belongs to
SL (UN V). the line bundle A"P is trivial. In this appendix we
establish the well-known converse (for which we could locate no
literature reference) that if AP is trivial then, after a possible
refinement of 4, we can obtain P by patching via matrices in SLn.
It is convenient to rephrase the above ideas in terms of
nonabelian Cech cohomology. If G 1is a sheaf of groups on X such as

GLn or SLn' a l-cocycle for a cover 4 with values in G is a

family of elements gyy € GLn(U N V) which are compatible on all
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triple intersections U N V N W. The cohomology set ﬁl(%.G) is the
quotient of the l-cocyles by a suitable equivalence relation, and the
cohomology set ﬁl(X.G) is the direct limit of the ﬁl(%,c) over all
coverings 4 of X. We remark that each ﬁl(%.G) is a subset of
ﬁl(X.G). (For more details, see [Hirz, I.3.1], [Milne, p.122],

[Gir, III.3.6].)

For example, the patching data described above for the vector
bundle P forms a l-cocyle for A with values in GLn. This gives a
1-1 correspondence between the set ﬁl(X,CLn) and the set Pn(X) of
rank n vector bundles on X. The subset ﬁl(%.GLn) corresponds to
those vector bundles in Pn(X) which are trivial on each of the U in
%. (See [Weil], [Hirz, I.3.2.b], [Milne, p.134],.... .) The special

case n = (where GL1 = OX*) is the famous isomorphism

1
Pic(X) & ﬁl(x,ax*).

Similarly, the set ﬁl(X.SLn) is in 1-1 correspondence with the

set SPn(X) of "rank n vector bundles on X with structure group

SLn" [St] [Weil]. If P € SPn(X). then the patching maps gy for

the underlying vector bundle belong to the SLn(U N V). As we observed

above, this implies that An(P) = OX.

A.1. Proposition: Let X be a scheme, and let A = ﬁo(X.Ox) denote
its ring of global functions. The group A* of global units acts on
the pointed set SPn(X). and the orbit set SPn(X)/A* is isomorphic
to the pointed set of all rank n vector bundles P on X with
det(P) trivial.

In particular, if P 1is a rank n vector bundle with trivial



B. DAYTON AND C. WEIBEL 25

determinant, then P comes from SPn(X). That is, there exists an
open cover {U} of X such that P may be obtained by patching free

OU—modules together via matrices By € SLn(U ny).

Proof: For each a € A*, let a denote the diagonal n-by-n matrix
(a,1,...,1). If {gUV} is a l-cocycle for %, let a{gUV} denote
the cocycle (aguvahl} for 4. Because {guv} and a{guv} are
equivalent l-cocycles over CLn’ they define the same underlying
vector bundle on X. It is easy to verify that this prescription gives
an action of A" on each set ﬁl(%.SLn). hence on SPn(X). Now
consider the short exact sequence of sheaves of groups on X:

X) det} Ox* v 1.

I —SL (0,) — GL (0

By a diagram chase (see [Milne, III.4.5] or [Gir, III.3.3]), this gives
rise to the 6-term exact sequence of pointed cohomology sets:

det

Lo SL (A) — 6L (4) — A" — ilx.sL ) — BlxeL ) — alx.op) - 1.

%
Il I AP i
SPn(X) E— Pn(X) —— Pic(X)
The description of A"P by patching makes it clear that the map
Pn(X) — Pic(X) indeed sends P to A"P. A more careful diagram
chase (see [Gir. III.3.3.3.iv]) reveals that the image of SPn(X) in

Ph(X) is exactly the orbit set SPn(X)/A*. o

A.2. Example: Let X = spec(A), where A is the ring of continuous
functions on the 2-sphere 82 with values in R. By [St, 18.6],
SP2(X) = w1(312m) = Z. On the other hand, by [St, 18.5,26.2], the

action of -1 € A on SP2(X) sends n to -n and the image of
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SPy(X) 1s N in Py(X) TN UM

For our applications, we shall need a slightly stronger version of
A.1. When w: X —Y is a finite map, we want to describe vector

bundles on X using open sets of Y.

A.3. Lemma: Let w: X —Y be a finite map of schemes and P a rank
n vector bundle on X. Then for every point y of Y there is a

neighborhood U of y such that P is free on W-I(U).

Proof: The question being local, and 7 being affine [Hart, p.128],
we may asume that Y = spec(A) and X = spec(B), where B is a
finite A-module. Let S C A be the complement of the prime y. Since
S—lA is local, S—lB is semilocal. Since S-IP has constant rank,
it is a free S—IB-module [Bass, p.90]. Since P is finitely
generated, there is an s € S so that P[s-l] is a free

B[s-l]—module. o

A.4. Corollary: If w: X —Y 1is a finite map, the natural map
ﬁl(Y,w*GLn) — ﬁl(x,an) = P_(X)

is an isomorphism.

Proof: If % 1is a cover of Y, let w—l(%) denote the induced cover

(r" Y1)} of X. Since (mGL )(U) = GL (v '(U)). the cocycle

definition of cohomology makes it clear that

él(ﬂ,v*GLn) = ﬁl(v-l(%).CLn). But ﬁl(Y.v*GLn) is the union of the

ﬁl(m.w*GLn). while the lemma implies that ﬁl(X.GLn) is the union of

the H'(r '(1).cL ). a



B. DAYTON AND C. WEIBEL 27

A.4.1. Remark: When n =1, so that GL1 is commutative, A.4

follows from the Leray spectral sequence

+
Hp(Y.wa*GLl) > P q(X,GLl)

since the stalk of RIV*GL1 at any point y is

Hl(Spec(By).CLl) = Pic(B)) = O.

Now suppose that P € SPn(X), i.e., that P has structure group
SLn' We assert that there is a cover of the type {W—I(U)) for which
P may be obtained by patching via matrices in SLn. To do so, note
that such data determines a l-cocyle for the cover {U} of Y with
values in v*SLn = SLn("*OX)' We can therefore formulate a slightly

stronger result:

A.5. Proposition: Let 7: X — Y be a finite map. Then the natural

map
ﬁl(Y.v*SLn) — A'(x.sL ) = SP_(X)

is a bijection. In particular, if P € SPn(X) then there is a cover
{U} of Y such that P may be obtained by patching free modules on

the v-l(U) via matrices gy € SLn(v_l(U nyvy).

Proof: Copy the proof of A.l, using A.4. a
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